
EClinicalMedicine 37 (2021) 100959

Contents lists available at ScienceDirect

EClinicalMedicine

journal homepage: https://www.journals.elsevier.com/eclinicalmedicine
Research Paper
Antiviral effect of high-dose ivermectin in adults with COVID-19: A proof-
of-concept randomized trial

Alejandro Krolewieckia,*, Adri�an Lifschitzb, Matías Moragasc, Marina Travaciod,
Ricardo Valentinie, Daniel F. Alonsof, Rub�en Solarig, Marcelo A. Tinellih, Rub�en O. Ciminoa,
Luis �Alvarezb, Pedro E. Fleitasa, Laura Ceballosb, Marcelo Golembac, Florencia Fern�andezc,
Diego Fern�andez de Oliveirae, German Astudillog, In�es Baecke, Javier Farinai,
Georgina A. Cardamaf, Andrea Manganoc, Eduardo Spitzerh,1, Silvia Goldj,1, Carlos Lanusseb,1

a Instituto de Investigaciones de Enfermedades Tropicales (IIET-CONICET), Sede Regional Or�an, Universidad Nacional de Salta, Alvarado 751 (4530), Or�an,
Argentina
b Laboratorio de Farmacología, CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Cen-
tro de Investigaci�on Veterinaria de Tandil (CIVETAN), Tandil, Argentina
c Unidad de Virología y Epidemiología Molecular, Hospital de Pediatría ''Prof. Dr. Juan P. Garrahan''-CONICET, Ciudad de Buenos Aires, Argentina
d C�atedra de Química General e Inorg�anica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
eDepartamento de Medicina, Centro de Educaci�on M�edica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
f Centro de Oncología Molecular y Traslacional (COMTra) y Plataforma de Servicios Biotecnol�ogicos, Departamento de Ciencia y Tecnología, Universidad Nacional
de Quilmes, Buenos Aires, Argentina
gHospital Francisco J. Mu~niz, Buenos Aires, Argentina
h Laboratorio Elea/Phoenix, Los Polvorines, Argentina
i Servicio de Infectología, Hospital Cuenca Alta, Ca~nuelas, Argentina
j Fundaci�on Mundo Sano, Buenos Aires, Argentina
A R T I C L E I N F O

Article History:
Received 22 February 2021
Revised 17 May 2021
Accepted 25 May 2021
Available online xxx
* Corresponding author.
E-mail address: alekrol@hotmail.com (A. Krolewiecki

1 These authors contributed equally to this work.

https://doi.org/10.1016/j.eclinm.2021.100959
2589-5370/© 2021 The Author(s). Published by Elsevier
A B S T R A C T

Background: There are limited antiviral options for the treatment of patients with COVID-19. Ivermectin
(IVM), a macrocyclic lactone with a wide anti-parasitary spectrum, has shown potent activity against SARS-
CoV-2 in vitro. This study aimed at assessing the antiviral effect of IVM on viral load of respiratory secretions
and its relationship with drug concentrations in plasma.
Methods: Proof-of-concept, pilot, randomized, controlled, outcome-assessor blinded trial to evaluate antiviral
activity of high-dose IVM in 45 COVID-19 hospitalized patients randomized in a 2:1 ratio to standard of care
plus oral IVM at 0¢6 mg/kg/day for 5 days versus standard of care in 4 hospitals in Argentina. Eligible patients
were adults with RT-PCR confirmed SARS-CoV-2 infection within 5 days of symptoms onset. The primary
endpoint was the difference in viral load in respiratory secretions between baseline and day-5, by quantita-
tive RT-PCR. Concentrations of IVM in plasma were measured. Study registered at ClinicalTrials.gov:
NCT04381884.
Findings: 45 participants were recruited (30 to IVM and 15 controls) between May 18 and September 9, 2020.
There was no difference in viral load reduction between groups but a significant difference was found in
patients with higher median plasma IVM levels (72% IQR 59�77) versus untreated controls (42% IQR 31�73)
(p = 0¢004). Mean ivermectin plasma concentration levels correlated with viral decay rate (r: 0¢47, p = 0¢02).
Adverse events were similar between groups. No differences in clinical evolution at day-7 and day-30
between groups were observed.
Interpretation: A concentration dependent antiviral activity of oral high-dose IVM was identified at a dosing
regimen that was well tolerated. Large trials with clinical endpoints are necessary to determine the clinical
utility of IVM in COVID-19.
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1. Introduction

The emergence of a novel coronavirus, Severe Acute Respiratory
Syndrome coronavirus 2 (SARS-CoV-2) in Wuhan in December 2019
and its pandemic spread causing COVID-19 at a global scale, with
over 85 million reported cases and 1.7 million deaths by the end of
2020 has prompted the search for pharmacologic interventions to
treat, prevent and mitigate the consequences of this potentially dev-
astating acute respiratory infection. Several therapeutic agents have
been evaluated at different disease stages as potential antiviral thera-
pies; most of them as part of a drug repurposing strategy for active
principles already used in other therapeutic indications. Although dif-
ferent molecules such as hydroxychloroquine, lopinavir and remdesi-
vir have demonstrated antiviral activity against SARS-CoV-2 in vitro,
evidence from randomized controlled clinical trials has only demon-
strated clinical benefits for intravenous remdesivir in some groups of
hospitalized patients [1].
Ivermectin (IVM) is a widely used antiparasitic drug with over
900 million tablets distributed in 2019 through the Mectizan Dona-
tion Program for the treatment of onchocerciasis and lymphatic filari-
asis [2]. More recently, several viral infections like Dengue, Zika, and
Influenza were shown to be susceptible in vitro most likely through
host-based mechanisms [3]. A potent activity against SARS-CoV-2
was reported in Vero-hSLAM cell cultures using high concentrations
of IVM [4]. In a model of SARS-CoV-2 viral kinetics with acquired
immune response to investigate the dynamic impact of timing and
dosing regimens, the most significant effects for ivermectin were
identified with earlier and longer exposure at high doses; in this
regard, repeated daily doses of ivermectin at 600 mg/kg had mean-
ingful impact whereas doses of 300 mg/kg had significantly lower
effects [5]. Doses of 300mg/kg were recently found not to be superior
to placebo in a randomized clinical trial in Colombia [6]. IVM is pre-
scribed in weight-based regimens, most frequently at 200 mg/kg,
with a proposed link between Cmax and toxicity [7]. Higher dose reg-
imens are under evaluation due to their potential utility for new indi-
cations and dosing strategies [8,9]. Single dose regimens of up to
2000 mg/kg have been used in a trial in healthy volunteers without
clinically significant safety issues [10].

To evaluate the antiviral activity and safety profile of high dose
IVM in COVID-19 patients we completed a proof-of-concept random-
ized controlled clinical trial in hospitalized patients. To achieve fur-
ther insights into the potential clinical utility of IVM in COVID-19, the
relationship between pharmacokinetic (PK) (IVM plasma concentra-
tions) and pharmacodynamic (PD) (dynamic of the viral load) aspects
was investigated. Here we present the results of the trial with
descriptions on the impact of IVM on SARS-CoV-2 viral load in respi-
ratory secretions.
2. Methods

2.1. Study design

Pilot, multicenter, randomized, open label, outcome assessor
blinded, controlled study to assess the antiviral activity and safety of
a 5-day regimen of high dose IVM versus no treatment in a 2:1 alloca-
tion ratio, in patients with COVID-19. All patients in both groups
received standard of care which at that moment in the study area
included hospitalization of all symptomatic cases. The trial was done
at 4 hospitals in the metropolitan area of Buenos Aires, Argentina.

Ethical approval was obtained from the Institutional Independent
Ethics Committees and national regulatory agencies. All participating
individuals provided written informed consent. The trial was done in
accordance with the principles of the Declaration of Helsinki and is
registered with ClinicalTrials.gov, NCT04381884. This study con-
formed to the CONSORT 2010 guidelines. The funding sources had no
role on the design, analysis or decision to publish the results of this
study.
2.2. Participants

Participants were COVID-19 patients aged 18 to 69 years-old with
RT-PCR confirmed infection, hospitalized and not requiring intensive
care. Eligibility criteria included COVID-19 symptoms onset � 5 days
at recruitment, absence of use of drugs with potential activity against
SARS-CoV-2 (hydroxychloroquine, lopinavir, remdesivir and azithro-
mycin); and those drugs were not permitted during the first week of
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the trial. Exclusion criteria included the use of immunomodulators
within 30 days of recruitment, pregnancy, breast feeding and poorly
controlled comorbidities. Patients of child-bearing age (men and
women) were eligible if agreed to take effective contraceptive meas-
ures during the study period and for at least 30 days after the last
study drug administration.

2.3. Randomization and masking

A blocked randomization with random block sizes (of 3 or 6 allo-
cations) and stratified by center was used. The randomization list
was developed prior to study initiation and by means of a centralized
eCRF/IWRS web system (Jazz Clinical, Buenos Aires, Argentina). For
reproducibility, a random seed of 1701214029 was used. Once the
availability of the informed consent and the verification of all eligibil-
ity criteria had been confirmed, the assignment was communicated
to the investigators on the computer screen and by email. The
patients and center personnel were not blinded to the allocated
group. The outcome assessors (personnel in charge of viral load
determinations) were blinded to the allocated group upon receiving
the samples labeled with the randomization number and the visit
number.

2.4. Procedures

All patients were evaluated at study entry with full history and
physical exam. Patients in the IVM group received oral treatment for
5 consecutive days with either breakfast or lunch at approximately
24 h intervals. IVM 6 mg ranurated tablets (IVER P, Laboratorios Elea/
Phoenix, Argentina) were used in all cases at a dose of 600 mg/kg/day
based on baseline weight rounding to the lower full (6 mg) and half
(3 mg) dose. The regimen of 600 mg/kg for 5 days was selected based
on the in-vitro data suggesting the need for higher doses than for cur-
rent indications of IVM, the available data on the safety of this dose in
regimens of up to 3 days (either in fast or fed state) and the available
information on the PK of IVM, predicting the lack of significant accu-
mulation of IVM after 5 daily doses [8,9,11,12]. Nasopharyngeal
swabs were collected at baseline and 24, 48 and 72 h and on day 5 for
SARS-CoV-2 viral load quantification. Blood samples were obtained
by venipuncture for plasma IVM concentrations 4 h after drug intake
on treatment days 1, 2, 3, and 5 (aiming at measuring peak plasma
levels) and on day 7 (aiming to evaluate potential drug accumulation)
in the IVM group. Blood samples were obtained from participants in
both groups for hematologic and chemical parameters.

2.5. Outcomes

The primary outcome measure was the difference in SARS-CoV-2
viral load between baseline and day-5 in both groups. Secondary out-
comes included clinical evolution at days 7 and 30, relationship
between IVM plasma concentrations and the primary outcome, and
frequency and severity of adverse events.

2.6. SARS-CoV-2 viral load measurements

Viral load of SARS-CoV-2 from nasopharyngeal swabs was quanti-
fied from samples stored at �80 °C until use. Viral RNA was extracted
using QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) from
140 mL of stored samples. Then, an in-house reverse transcriptase
quantitative PCR (RT-qPCR) targeting N gene of SARS-CoV-2 was per-
formed. The standard curve consisted of an in vitro transcribed viral
RNA serially diluted in a cellular RNA matrix from negative nasopha-
ryngeal samples. This assay included the measure of a housekeeping
gene as an internal control and normalizer. The housekeeping gene
cycle threshold (Ct) was used to correct the specific-SARS-CoV-2 Ct
according to the number of cells in the sample. Therefore, viral load
measurements were expressed as log10 copies per reaction instead of
log10 copies per mL as discussed by Han and colleagues [13]. The per-
formance of the assay includes: (i) efficiency = 99%, (ii) reproducibil-
ity with a coefficient of variation (CV) between 1¢01 and 2¢31, (iii)
repeatability with a CV between 0¢27 and 1¢89%, (iv) dynamic range
from 10 to 1 £ 108 copy per reaction, (v) specificity = 100% tested
against SARS-CoV-2 negative samples and a panel of respiratory
viruses. All these parameters were determined according to the
guidelines for in vitro quantitative diagnostic assays as were reported
previously [14,15].

2.7. Measurement of IVM plasma concentration profiles

IVM concentrations in plasma samples were determined by High-
Performance Liquid Chromatography (HPLC) with fluorescence
detection. The chromatography technique was adapted as previously
described [16]. An aliquot of plasma was combined with moxidectin
(used as internal standard). After an acetonitrile-mediated chemical
extraction, IVM was converted into a fluorescent molecule using N-
methylimidazole and trifluoroacetic anhydride (Sigma Chemical, St
Louis, MO, USA). An aliquot (100 mL) of this solution was injected
directly into the HPLC system (Shimadzu Corporation, Kyoto, Japan)
and analyzed using a reverse phase C18 column (Kromasil, Eka
Chemicals, Bohus, Sweden, 5 mm, 4¢6 mm £ 250 mm) and an acetic
acid 0¢2% in water/methanol/acetonitrile (1¢6/60/38¢4) mobile phase
at a flow rate of 1¢5 mL/min at 30 °C. Fluorescent detector was set at
365 nm (excitation) and 475 nm (emission wavelength). The coeffi-
cient of determination (r2) of the calibration curve was 0¢995. The
mean absolute drug recovery percentage was 94%. The precision of
the method showed a coefficient of variation below 8¢1%. The limit of
drug quantitation was 0¢3 ng/mL. Drug concentrations in experimen-
tal plasma samples were obtained by peak area integration using the
Solution Software (Shimadzu Corporation, Kyoto, Japan).

2.8. Pharmacokinetic and pharmacodynamic analysis of the data

IVM plasma concentrations were measured in each patient 4 h
post-dosing on the established treatment days. Individual plasma vs
time curves were plotted. The pharmacokinetic parameters were
determined using PK Solutions 2.0 (Ashland, Ohio, US) computer soft-
ware. The viral decay rate was calculated from the viral load vs time
curve. Following an exponential model, the decay rate constant was
calculated from the following equation:

λ ¼ S� 2 ¢303
where λ is the decay rate constant and S is the slope [17].

2.9. Statistical analysis

Sample size calculation was determined on current recommenda-
tions for pilot trials, indicating that either at least 10 cases per group
should be included or based on the sample size calculation for the
full-scale clinical trial and include at least 9% of that size for a confi-
dence interval of 80% [18,19]. Based on these grounds and aiming for
a sample size with the ability to detect a low effect size (0¢3) of the
intervention (IVM) in the difference between baseline and day-5 viral
load values compared to untreated controls given the absence of pre-
liminary or historical data; sample size for a full-scale trial for two
study groups with a significance level of 5% and 80% power, a 2:1 ran-
domization and inflated for 10% lost-to-follow-up was calculated in
342 participants and a pilot trial would be at least 31 [19]. In view of
the presumed effect of IVM on the replication of SARS-CoV-2 and the
limited available information of viral dynamics at the time of study
design (April 2020), the sample size of the pilot trial according to
standardized size effects [20], was calculated for a 2:1 randomization
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to be 45 patients, including 30 participants in the IVM arm and 15
controls without consideration to the center-based stratification.

Baseline characteristics of the two groups (control and ivermec-
tin) were compared with Student`s T- test and Chi square. Difference
in viral load between baseline and day-5 in the two groups as well as
the comparison between the viral decay rate of both groups was
compared by the non-parametric Mann�Whitney test. The clinical
evolution at day-7 was evaluated by Fisher's Exact Test. Finally, the
relationship between IVM plasma concentrations with viral load
reduction and viral decay rate were measured by Spearman rank test.
When difference across three groups by Kruskal-Wallis was signifi-
cant, pairwise comparisons with Dunn`s multiple comparisons test
were used. Two randomly occurring single missed values of viral load
in two different participants were assumed as “missing completely at
random” type of values and estimated by regression analysis using
the interpolation of all the existing data from that particular curve. In
all cases, p-values <0¢05 were considered statistically significant. All
analysis were performed with GraphPad Prism version 5¢00 for Win-
dows (La Jolla California USA).

2.10. Role of the funding source

The sponsors of the study participated in study design, but had no
role in primary data collection, data analysis, data interpretation,
writing of the report, or the decision to submit for publication. All
authors had full access to all the data in the study and had final
responsibility for the decision to submit for publication.

3. Results

Enrolment started on May 18 and finished on September 9 2020,
with 45 participants recruited among 4 participating hospitals. As
planned, 30 were randomized to the IVM group and 15 to the
untreated control group. Two subjects withdrew consent in the IVM
group; in 1 case due to a mild rash and nausea after 1 dose of IVM
and the other due anxiety after 2 doses; in both cases, adverse events
resolved spontaneously; the remaining 28 subjects in the IVM group
completed treatment. One case in the control group was withdrawn
from the study due to the initiation of lopinavir on day-5 due to dis-
ease progression and another was lost to follow-up after the visit on
day-7. In addition, ten cases, seven in the IVM group and three con-
trols, presented viral load below the limit of quantification (<10 cop-
ies/reaction) at baseline. All these cases remaining undetectable in
most samples through the follow-up and excluded from the efficacy
analysis. The remaining 32 cases (20 treated and 12 control) consti-
tute the efficacy analysis population (Fig. 1).

Baseline characteristics are summarized in Table 1. Comorbidities
and disease stages were similar between groups with the most fre-
quent comorbidity being a higher-than-normal body mass index
(spanning from overweight to obesity grade III) in both groups, which
was present in 19 (63%) in the IVM group and 12 (80%) controls
(p = 0¢43) (Table 1). No differences in clinical symptoms, signs, or lab-
oratory parameters were observed between groups at baseline and
the two groups did not show differences in the number of individuals
on the WHO-ordinal scale categories. Disease progression was regis-
tered in 3 (7%) of the study population; 2 in the treated group and 1
in among the controls, with 1 case in the IVM group requiring inva-
sive mechanical ventilation and no significant differences in clinical
evolution at day-7 and day-30 between groups. No deaths occurred
through the study period.

The difference in viral load between baseline and day-5 was
similar between groups and decreasing over time, without signifi-
cant differences (Fig. 2). No differences in baseline viral load were
detected between males and females. Viral load values under the
limit of quantification of 10 copies/reaction at day-5 were
achieved by 6 of 20 (30%) subjects in the IVM group and in 1 of
12 (8¢3%) in the control group without statistical significance
between groups. When mean plasma IVM concentration levels
were analyzed in relation to reduction in viral load, a significant
positive correlation was identified, with those patients achieving
higher mean plasma concentrations of IVM reaching higher
reductions in viral load in nasopharyngeal secretions (r: 0¢44;
p < 0¢04). Mean IVM plasma concentration levels also showed a
positive correlation with viral decay rate (r:0¢47, p = 0¢02).

3.1. Data are mean (SD). Day-1 indicates baseline measurements

Based on the observed antiviral response and the observed IVM
concentration levels in this study, treated patients were divided in
two subgroups with 160 ng/ml as the cutoff plasma concentration for
a post-hoc analysis, since it was identified as the potential threshold
above which a significant viral load reduction could be established
compared to untreated controls as an indicator of the relationship
between ivermectin concentrations in plasma and antiviral activity.
Median Cmax was 202 ng/ml (IQR: 167�268 ng/ml) in the >160 ng/
ml subgroup and 109 ng/ml (IQR: 91�141 ng/ml) in the <160 ng/ml
subgroup (p < 0¢0001). To further explore this PK/PD relationship,
viral load dynamics and difference between baseline and day-5 were
analyzed in the 2 subgroups of IVM treated patients, with median
(IQR) reductions in viral load of 42% (31�73) in the control group,
40% (21�46) in treated patients with <160 ng/mL median plasma
concentrations, and 72% (59�77) in the higher concentration group,
with a statistically significant difference between the latter and the
other groups (Kruskal�Wallis p = 0¢0096) (Fig 3). The proportion of
subjects achieving viral load values under the limit of quantification
at day-5 was 8¢3% (1 of 12) in the control group, 9¢1% (1 of 11) in the
<160 ng/ml subgroup and 55¢6% (5 of 9) in the >160 ng/ml subgroup
(p < 0¢0001).

All treated patients receiving IVM 0¢6 mg/kg/day for 5 days.
Drug-induced effects on viral clearance were also assessed

using viral decay rates as an endpoint parameter and its relation-
ship with IVM plasma concentrations. The viral decay rate in
treated patients with IVM plasma levels >160 ng/mL was signifi-
cantly greater (median 0¢64 d�1) compared to untreated controls
(median 0¢13 d�1) and to the subgroup with <160 ng/mL median
plasma concentrations (median 0¢14 d�1) (p = 0¢04) (Fig. 4a). No
statistically significant differences in baseline viral load were
observed between IVM concentration subgroups. The IVM con-
centration profiles did not correlate with body weight (r:0¢1;
p > 0¢05) or body mass index (r:0¢07; p > 0¢05) among the 28
patients that completed treatment with IVM.

Adverse events were reported in 18 (40%) of the 45 patients, 13
(43%) in the IVM group and 5 (33%) in the control group (Table 2).
The most frequent adverse event and the only experienced by more
than 1 case in the IVM group was rash in 3 (10%) cases (all mild, self-
limited and lasting approximately 24 h); in the control group, single
events of abdominal pain, dizziness, anxiety, anguish, and hypergly-
cemia (all mild) were reported. A single serious adverse event (SAE)
occurred in a patient in the IVM group with hyponatremia, which has
been recently recognized in case series of COVID-19 cases and has
not been reported in association to IVM use [21].

4. Discussion

This proof-of-concept trial designed to evaluate the antiviral
activity of IVM against SARS-CoV-2 in adult patients with COVID-19
showed no differences between treatment and control groups in its
primary endpoint which was the difference in SARS-CoV-2 viral load
between baseline and day-5 (Fig. 1). However, our results indicate a
concentration-dependent antiviral activity of IVM in SARS-CoV-2
infected patients treated within 5 days of symptoms onset. This sta-
tistically significant difference was identified for the relationship



Fig. 1. Trial profile.
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between IVM plasma concentrations and the primary outcome
(Figs. 3 & 4); which confirms previous in vitro activity shown in cell
cultures [4]. Findings on IVM plasma concentrations are in agreement
with human SARS-CoV-2 viral kinetic models identifying the need for
high doses, but contradict those concerns stating that those drug con-
centrations would not be achievable at safe doses [5,22]. The exten-
sive pattern of IVM distribution to lung tissue has been well
characterized in cattle and pigs, with the later also achieving in naso-
pharyngeal tissue higher levels than plasma [16,23]. Considering that
similar volumes of distribution have been reported for IVM in both
cattle and humans and the systemic availability observed in this
clinical trial, it is reasonable to estimate median IVM levels >395 ng/
g in lung tissue. A similar pattern of IVM distribution to lung tissue
has been recently simulated using a minimal physiologically based
PK model [24].

The antiviral effect was seen after IVM plasma concentration
measurements allowed discrimination between patients achieving
higher levels and identifying a direct relationship between drug con-
centration and viral elimination. Additionally, relevant conclusions
on the natural history of the illness can be derived from the behavior
of the control group in this trial, which demonstrates the self-limited
nature of viral load in SARS-CoV-2 infections, that in 22% of the cases



Table 1
Baseline characteristic of the study population.

Control (n = 15) Ivermectin (n = 30) P value

Age (year) 38�1 § 11�7 42�3 § 12�8 0�29
Gender
Female 5 (33%) 15 (50%) 0�29
Male 10 (67%) 15 (50%)

Weight (kg) 79�7 § 14�4 75�3 § 15�0 0�35
Overweight 8 (53%) 6 (20%) 0�05
Obesity I 2 (13%) 11 (37%) 0�20
Obesity II 1 (7%) 1 (3%) 0�79
Obesity III 1 (7%) 1 (3%) 0�79

Oxygen saturation <94% 0 1 (3%) 0�63
Log viral load (log10
copies/reaction)

5�39 § 1�56 (n = 12) 4�18 § 1�60 (n = 20) 0�05

Hematology
White blood cell count
(cell/mL)

4857 § 1874 6014 § 2402 0�09

Lymphocyte count
(cell/mL)

1478 § 266 1744 § 747 0�09

Biomarkers
Lactate dehydroge-
nase (IU/L)

460 § 117 468 § 140 0�85

Ferritin (mg/dL) 1318 § 1969 1071 § 1304 0�66
D-dimer (mg/mL) 1�5 (0�1�2�8) 1�5 (0�5�1�8) 0�82

Time from symptoms
onset (day)

3�6 § 1�4 3�5 § 1�0 0�78

Body temperature
�37�5 °C

1 (7%) 4 (13%) 0�70

WHO-ordinal scale
3 13 (87%) 29 (97%) 0�20
4 2 (13%) 1 (3%)

Ground glass opacities
in thoracic imaging

6 (40%) 14 (47%) 0�67

Comorbidities
Hypertension 3 (20%) 3 (10%) 0�35
Diabetes 1 (7%) 6 (20%) 0�24
Chronic lung disease/
Asthma

1 (7%) 4 (13%) 0�50

Numeric variables are reported as median (IQR) or mean § standard deviation� Cate-
goric variables are reported as counts (%). Overweight: Body mass index (BMI)
25�29�9 kg/m2; Obesity I: BMI 30�34�9 kg/m2; Obesity II: BMI 35�39�9 kg/m2;
Obesity III: BMI >40 kg/m2.

Fig. 3. Viral load reduction between baseline and day-5 (median and IQR) in untreated
controls and IVM treated patients discriminated by their median IVM plasma concen-
trations.
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was already below the limit of quantification at baseline; a finding
similar to what has been observed in a trial evaluating remdesivir for
the treatment of COVID-19 [25], highlighting the relevance of ade-
quate timing of implementation of antiviral treatment as has been
shown in a recently published pilot double-blind trial randomized
trial of IVM for non-severe COVID-19 that identified statistically
Fig. 2. Viral load by quantitative RT-PCR on upper respiratory tract secretions since
baseline in patients receiving IVM 0�6 mg/kg/day for 5 days versus untreated controls.

Fig. 4. Viral load decay rates by quantitative RT-PCR on upper respiratory tract secre-
tions in untreated controls and IVM treated patients according to median plasma con-
centrations of IVM. Data are expressed as median (IQR).



Table 2
Summary of events in safety population.

Control (n = 15) Ivermectin (n = 30)

Patients with AEs 5 (33%) 13 (43%)
Patients with possible/probable
related AEs

NA 9

Patients with SAEs 0 1*
Patients with possible/probable
related SAEs

0 1

Number of AEs 5 17
Number of possible/probable related
AEs

NA 11

Number of AEs Grade 3/4 0 3**

AE: adverse event. SAE: serious adverse event. *: hyponatremia; **: includes the
SAE (hyponatremia) and ALT and AST elevation, both in the same patient.
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significant differences in the duration of anosmia and trends towards
lower viral load with treatments started within 72 h of symptoms
onset [26].

IVM plasma concentrations >160 ng/mL were measured in 9
(45%) patients included in the efficacy analysis population. In a trial
using a 3-day regimen of 600mg/kg for malaria control among adults,
median Cmax (CI95%) was 119 ng/mL (45�455) [8]. Diet is a key vari-
able affecting oral bioavailability of IVM, with increased plasma con-
centrations achieved with fed state [27,10]. The interaction of IVM
with ABC transporters as P-glycoprotein and the modulation of P-gly-
coprotein activity after oral administration is well known [28,29].
Thus, variable constitutive and/or induced level of expression and
activity of intestinal P-glycoprotein in treated patients, may have
contributed to the observed large variability in the pattern of IVM
absorption and systemic exposure.

Although further information is needed, this pilot trial adds evi-
dence on the safety of multiple-day high-dose regimens of IVM, with-
out unexpected findings; in agreement with a trial in Kenya
evaluating the mosquitocidal effect of IVM at 300 and 600 mg/kg in
adults with malaria [9]. In that trial, IVM was associated with dose-
dependent mild transient visual disturbances in <10% of the partici-
pants which were not reported in the current study [9]. The fre-
quency of adverse events reported by study participants (43% of
those in the IVM group and 33% of the untreated controls) (Table 2),
likely reflects events related and unrelated to the study drug which
as expected were more frequent in the treated groups, although most
of them of severity grades 1 and 2.

Limitations of this study include its sample size, which is based on
demonstrating the antiviral activity of IVM against SARS-CoV-2 but
lacks power to detect differences in clinical outcomes. The analysis of
the primary outcome based on days since study entry rather than
since symptom onset might have added a source of variability in viral
load values and curves, which was partially controlled by using the
difference between baseline and day-5 rather than the longitudinal
trajectory of the curves; and although both treatment arms were bal-
anced in terms of comorbidities and disease severity (Table 1), no
adjustments regarding infection stage or comorbidities were made in
the analysis, which might constitute a minor limitation of this study.
The lack of a registry of the meals ingested around the intake of each
treatment may add a source of variation to the observed IVM plasma
profiles. The utilization of a highly sensitive viral load measurement
method with the ability to reliably quantify as low as 10 copies/reac-
tion might have caused an underestimation of the antiviral activity of
IVM in its capacity to lower viral load values below the lowest level
of quantification. Although not achieving statistically significant dif-
ferences between groups, the wide dispersion of baseline viral load
and the baseline difference in viral loads between groups are limita-
tion of this study. Two viral load values among the 128 individual
viral load measurements used for the primary outcome, were
“missed completely at random” type of values due to technical
reasons and estimated using regression analysis; those two values
constitute a minor limitation of this study.

The assessment of the effect of drug candidates against viruses
causing acute respiratory infections is hampered by several aspects
of these host-pathogen relationships including rapid immune control
of viral replication and high variability in symptom scores among
patients [30]. For that reason, key components for adequate end-
points are sensitive quantifiable measurements of the underlying
cause as the quantitative RT-PCR [31]. As it has been proposed in an
influenza model of antiviral candidate drugs evaluation 25, viral decay
rates proved to be a critical parameter of antiviral activity. Addition-
ally, as it has been clearly demonstrated for acute viral infections,
early treatment initiation plays a critical role [31,32]. The clinical rel-
evance of these findings remains to be confirmed in trials with clini-
cal endpoints. Beyond clinical aspects, lowering viral burden might
influence infectivity, although there is conflicting data regarding the
relationship between burden of viral shedding and infectivity [33].
The proposed antiviral mechanism of IVM is through its ability to
inhibit the nuclear import of viral proteins mediated by IMPa/b1 het-
erodimer [4], and it has also been suggested that IVM could promote
defense mechanisms such as pyroptosis in infected epithelial cells
[34]. Drugs such as ivermectin can be used to target viral entry or
viral replication mechanisms in host cells, as well as to modulate the
innate immune responses, to achieve indirect antiviral activity in
vivo. Mechanisms essential for viral infection, such as nuclear trans-
port or intracellular signal transduction, among others, have been
indicated as better targets to identify broad-spectrum antiviral
agents, with some advantages over direct-acting antivirals targeting
viral components [35].

In summary, our findings support the hypothesis that IVM has a
concentration dependent antiviral activity against SARS-CoV-2 and
provides insights into the type of evaluations to be considered in the
assessment of antiviral drugs for the control of COVID-19. Follow-up
trials to confirm our findings and to identify the clinical utility of IVM
in COVID-19 are warranted.
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