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Abstract

Background

Cancer patients have an increased risk of a severe COVID-19 infection with higher mortality

rate. This study aimed to analyze the levels of anti-SARS-CoV-2 S-RBD IgG and NAB

among cancer patients who were vaccinated with COVID-19 vaccines, either with

BNT162b2, mRNA-1273, AZD1222/ChAdOx1nCoV-19, or Coronavac/BBIBP-CorV

vaccines.

Method

A cross-sectional study was conducted among subjects with either solid or hematological

cancers who had received two doses of either mRNA or non-mRNA vaccines within 6

months. The levels of anti-SARS-CoV-2 S-RBD IgG and NAb were analyzed using the

Mindray Immunoassay Analyzer CL-900i. Statistical analysis was conducted using mean

comparison and regression analysis.

Result

The mRNA-1273 vaccine had the highest median levels of S-RBD IgG and NAb, followed

by BNT162b, ChAdOx1nCoV-19, and BBIBP-CorV/Coronavac. The levels of S-RBD IgG

and NAb in subjects vaccinated with mRNA vaccines were significantly higher than those of

non-mRNA vaccines when grouped based on their characteristics, including age, type of

cancer, chemotherapy regimen, and comorbidity (p<0.05). Furthermore, the S-RBD IgG

and NAb levels between the subjects vaccinated with non-mRNA vaccines and the subjects

vaccinated with mRNA vaccines were significantly different (p<0.05). However, there was

no significant difference between the same types of vaccines. This study demonstrated a

very strong correlation between the level of S-RBD IgG and the level of NAb (R = 0.962;
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p<0.001). The level of anti-SARS-CoV-2 S-RBD IgG was consistently higher compared to

the level of NAb.

Conclusions

Generally, mRNA vaccines produced significantly higher anti-SARS-CoV-2 S-RBD IgG and

NAb levels than non-mRNA vaccines in cancer subjects.

Introduction

Coronavirus Disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coro-

navirus-2 (SARS-CoV-2), a virus that belongs to the Betacoronavirus genus. COVID-19 is

known to have a wide spectrum of clinical manifestations, ranging from asymptomatic infec-

tion to respiratory failure. Cancer patients are at risk of a more severe COVID-19 infection

with higher mortality rate. The Cancer Consortium Registry (CCC19) stated that the mortality

rate of cancer patients with COVID-19 is 26% higher than the mortality rate of non-cancer

patients with COVID-19. Cancer type, age, performance status, and comorbidities are some of

the factors that may impact the clinical outcome of cancer patients infected with COVID-19

[1–3].

SARS-CoV-2 has several proteins in its outer surface, one of which is the spike (S) protein.

The S protein is a large class I fusion transmembrane homotrimer protein that plays a big role

in viral infectivity [3]. The N-terminal domain (NTD), receptor binding domain (RBD), and

the conserved domains of the S2 subunit are all neutralizing antibody (NAb) epitopes of the S

protein [4]. Through the receptor-binding domain (RBD), which is in the S1 domain of the S

protein, SARS-CoV-2 is able to bind onto angiotensin converting enzyme (ACE)-2 receptor. It

then fuses with the host membranes via the S2 subunit of the S protein which allows the viral

RNA to enter the host cell’s cytoplasm [3]. The S protein also serves as a target for the host’s

immunological response to induce the production of specific antibodies towards SARS-CoV-2.

The world’s vaccine-makers began to focus on the S epitope. Fortunately, the most potently

neutralizing epitope, the RBD of the S epitope, is tremendously conserved and vaccines target-

ing this epitope may be capable to protect against all circulating SARS-CoV-2 strains. Addi-

tionally, vaccinations consistently induced high levels of NAb and IgG in all of the participants

in recent studies [4]. Therefore, the NAb and S-RBD IgG have been widely used in phase I-III

clinical trials COVID-19 vaccines to examine the efficacy, immunogenicity, as well as the opti-

mal vaccine dose [4, 5].

In Indonesia, the most readily available vaccines are BNT162b2 and mRNA-1273, which

are mRNA-based vaccines; AZD1222/ChAdOx1nCoV-19, which is a replication deficient ade-

noviral vector vaccine; and Coronavac/BBIBP-CorV, which is inactivated vaccine. These vac-

cines have been proven to be efficacious in the normal population based on some clinical trials

[4]. However, the efficacy and immunogenicity of these vaccines for cancer patients need fur-

ther investigation. Some studies have shown that cancer patients do not respond as well to

these vaccinations, especially those receiving specific treatment regimens that impair the

immune response [1, 2].

The essential world cancer organizations have recommended the COVID-19 vaccination

for all patients with cancer, including those receiving active anticancer therapy. There is cur-

rently limited data available regarding the immunogenicity of these approved COVID-19 vac-

cines in cancer patients [6–10]. This research aims to evaluate the immune response of cancer

patients towards several COVID-19 vaccines by measuring the levels of anti-SARS-CoV-2
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S-RBD IgG and NAb. This research also aims to compare the S-RBD IgG and NAb levels

between the cancer patients who received mRNA-based vaccines and the cancer patients who

received non-mRNA-based vaccines.

Material & method

Research subjects

This was a multi-center cross-sectional study conducted at Dr. Cipto Mangunkusumo General

Hospital and Pondok Kopi Islamic Hospital. The samples in this study were gathered for 6

months, from October 2021 to March 2022. The subjects were patients diagnosed with either

solid or hematological cancers; aged� 18 years old; had received two doses of COVID-19 vac-

cination; and within 6 months after completing two-doses of vaccination. Patients who already

had their COVID-19 vaccine boosters were excluded.

Sample collection and processing

Approximately 3 ml of venous blood sample was drawn and centrifuged at 4000 rpm for 10

minutes. The serum was then harvested and stored at -20˚C for storage. The serum was exam-

ined by Chemiluminescent immunoassay or CLIA method to measure the levels of anti-

SARS-CoV-2 S-RBD IgG antibody (S-RBD IgG) and anti-SARS-CoV-2 neutralizing antibody

(NAb) using the Mindray immunoassay analyzer CL-900i. The results of both S-RBD IgG and

NAb are measured in AU/mL. According to the assay manufacturer, the cut-off values for

both SARS-CoV-2 NAb and S-RBD IgG seropositivity were >10 AU/mL.

Statistical analysis

Subject characteristics are then presented in a table. The averages of numeric variables that are

normally distributed were presented in the form of a mean and standard deviation (SD),

whereas those that are not normally distributed were presented as a median and interquartile

range (IQR). Significant differences between the means of two groups were analyzed using the

independent-sample T test (for parametric data) or using the Mann-Whitney U test (for non-

parametric data). One-Way ANOVA and post hoc test were done to compare significant dif-

ferences between the means of antibody levels for each vaccine with a post hoc analysis using

the Hochberg test. Afterward, a bivariate correlation analysis was measured between IgG and

NAb using Kendall’s regression analysis.

Ethical approval

Ethical approval for this study was granted by The Ethics Committee of The Faculty of Medi-

cine, Universitas Indonesia (ethical approval number: KET–999/UN2.F1/ETIK/PPM.00.02/

2021). This research was performed in accordance with the Declaration of Helsinki. Written

informed consent was obtained from all subjects involved in the study.

Results

A total of 119 patients were included in this study. All subjects had received two doses of either

BNT162b2, mRNA-1273, AZD1222/ChAdOx1nCoV-19, or Coronavac/BBIBP-CorV vaccines

without boosters. The majority of the participants were female (86.6%).

About 92.4% of the participants had solid organ cancer, which comprises gynecological,

breast, lung, prostate, pancreatic, head and neck, brain, colorectal, kidney, and testicular

malignancies. Only 7.6% of the subjects had hematologic malignancies, consisting of leukemia

and lymphoma (Table 1).
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About 80.7% of the subjects received systemic chemotherapy, either exclusively or with

concurrent radiotherapy. Chemotherapy regimens include hormonal therapies, anthracycline-

based chemotherapy, taxane-based chemotherapy, alkylating agents, antimetabolite drugs,

kinase inhibitors and topoisomerase inhibitors, monoclonal antibodies, vinca alkaloids, and

Table 1. Subject characteristics.

Characteristics N (119)

Sex, N(%)

Male 16 (13.4)

Female 103 (86.6)

Age, N(%)

� 60 99 (83.2)

> 60 20 (16.8)

Cancer group, N(%)

Solid 110 (92.4)

Non-solid 9 (7.6)

History of COVID-19 infection, N(%)

Yes 27 (22.7)

No 92 (77.3)

Vaccine, N(%)

BNT162b2 32 (26.9)

mRNA-1273 15 (12.6)

AZD1222/ChAdOx1nCoV-19 19 (16)

Coronavac/BBIBP-CorV 53 (44.5)

Vaccine type

mRNA vaccine 47 (39.5)

Non-mRNA vaccine 72 (60.5)

Chemotherapy, N(%) 96 (80.7)

Single agent 28 (29.1)

Combination 45 (46.9)

No data 23 (23.9)

Time since last chemotherapy, N(%)

� 6 months 29 (24.4)

> 6 months 67 (56.3)

Comorbidities

No 82 (68.9)

Yes 37 (31.1)

Anti-SARS-CoV-2 antibody level (AU/mL)

S-RBD IgG, median [IQR] 270.56 [658.01]

NAb, median [IQR] 129.03 [225.61]

Seroconversion S-RBD IgG, N(%) 111 (93.3)

mRNA, N = 47 45 (95.7)

Non-MRNA, N = 72 66 (91.7)

Seroconversion NAb, N(%) 112 (94.1)

mRNA, N = 47 46 (97.9)

Non-mRNA, N = 72 66 (91.7)

Abbreviation: S-RBD IgG, spike protein’s receptor-binding domain immunoglobulin G; NAb, neutralizing antibody;

IQR, interquartile range; SD, standard deviation

https://doi.org/10.1371/journal.pone.0281907.t001
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steroids. These agents are either used exclusively or in combinations based on the National

Comprehensive Cancer Network (NCCN) guidelines [11]. Subjects who had a history of myo-

cardial infarction, congestive heart failure, peripheral vascular disease, stroke or transient

ischaemic index, chronic obstructive pulmonary disease, connective tissue disease, peptic

ulcer, liver disease, diabetes mellitus, and chronic kidney disease are considered to have

comorbidities according to the Charlson Comorbidity Index (CCI) [12].

As observed in Table 1 and Fig 1, the level of S-RBD IgG was consistently higher than the level

of NAb. The levels of S-RBD IgG and NAb were also consistently higher among subjects vacci-

nated with mRNA vaccines than subjects vaccinated with non-mRNA vaccines. The seropositiv-

ity rate of both S-RBD IgG and NAb in subjects vaccinated with mRNA vaccines was higher than

the seropositivity rate of S-RBD IgG in subjects vaccinated with non-mRNA vaccines.

In Table 2, there was a significant difference in S-RBD IgG levels between the four different

vaccines. The NAb also showed a significant difference between the four different vaccines.

The levels of S-RBD IgG and NAb are higher among the subjects vaccinated with mRNA vac-

cine when compared to the subjects vaccinated with non-mRNA vaccine (p< 0.001).

In Fig 2, Horchberg GT2 post hoc analysis revealed that there’ significant difference in

S-RBD IgG and NAb levels between non-mRNA-based vaccines (Coronavac/BBIBP-CorV

and ChAdOx1nCoV-19) and mRNA-based vaccines (BNT162b2 and mRNA-1273) (p<0.05).

However, there was no significant difference between the same types of vaccines (BNT162b2

vs. mRNA-1273; and Coronavac/BBIBP-CorV vs. ChAdOx1nCoV-19) (Fig 2).

We also aimed to determine whether S-RBD IgG could be used as a proxy for NAb. As

shown in Fig 3, the correlation between the levels of S-RBD IgG and NAb in both the total and

the groupings based on the vaccine types (mRNA vaccines and non-mRNA vaccines) was very

strong (R = 0.962; p<0.001). Both of the mRNA and non-mRNA vaccines had very strong cor-

relations between the levels of S-RBD IgG and NAb (R = 0.941, p<0.001; R = 0.951, p<0.001,

respectively).

Fig 1. The Box Plot of NAb and S-RBD IgG level in logX(AU/mL) grouped by the vaccine types and cumulatively. The cut-off value for NAb and S-RBD

IgG seroconversion is 10 AU/mL, which means that any data greater than or equal to log10 or 1 in the graph above achieves seropositive conversion.

https://doi.org/10.1371/journal.pone.0281907.g001
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From Table 3, we could see that in this study, subjects who received mRNA-based vaccines

were able to produce higher S-RBD IgG and NAb levels compared to the subjects who received

non-mRNA-based vaccines in almost every subgroup. However, there was no significant dif-

ference in the levels of S-RBD IgG and NAb in subjects over 60 years old and subjects whose

last chemotherapy regimen was within 6 months of this study.

However, cancer patients who had a history of COVID-19 infection developed a signifi-

cantly higher antibody level for both mRNA and non-mRNA vaccines than non-infected sub-

jects (Table 3). As a result, we excluded subjects who had a prior COVID-19 infection

(Table 4). As can be seen in Table 4, mRNA-based vaccines produce higher S-RBD IgG and

NAb levels compared to non-mRNA-based vaccines in almost every subgroup. The level of

anti-SARS-CoV-2 NAb showed a significant difference between the mRNA and non-mRNA

vaccines in subjects older than 60 years old. The level of anti-SARS-CoV-2 S-RBD IgG and

NAb antibodies showed no such significant difference in subjects with hematologic cancer.

Both anti-SARS-CoV-2 S-RBD IgG and NAb demonstrated a significant difference in subjects

whose time since their last chemotherapy was less than 6 months.

As can be seen in Fig 4, the level of anti-SARS-CoV-2 S-RBD IgG demonstrated a very

strong correlation with NAb in almost each cancer subject’s characteristics received inacti-

vated vaccines.

Discussion

In this research, we found that the median level of S-RBD IgG was consistently higher in all

vaccines compared to NAb (Fig 1 and Table 1). This might be caused by the nature of the pro-

duction of these antibodies. SARS-CoV-2 infection might also induce long-lived memory T-

cells, memory B-cells, and mucosal-homing IgA plasmablasts [4, 13–15]. This is achieved

through a long immune cascade elicited by an epitope held by the virus itself. Several known

epitopes are the receptor binding domain (RBD), the N-terminal domain (NTD), and parts of

Table 2. Anti-SARS-CoV-2 S-RBD IgG antibody and anti-SARS-CoV-2 NAb levels.

Vaccine Type S-RBD IgG (n = 119) (Median [IQR]) in

AU/mL

NAb (n = 119) (Median [IQR]) in

AU/mL

Based on the vaccine type

mRNA 725.24 [3132.09] 232.70 [1143.19]

Non-mRNA 102.78 [284.53] 33.45 [132.18]

p value� <0.001�� <0.001+

Based on the vaccine

BNT162b2 693 [3380.73] 224.68 [1717.37]

mRNA-1273 1441.10 [2010.76] 361.31 [893.67]

AZD1222/ChAdOx1nCoV-

19

227.35 [451.68] 120.44 [175.99]

Coronavac / BBIBP-CorV 77.10 [223.13] 24.72 [115.23]

p value� <0.001++ <0.001+++

�Paired t-test with transformation

��Independent t-test with transformation
+Mann-Whitney test
++ANOVA test with transformation
+++Kruskal-Wallis test

Abbreviation: S-RBD IgG, spike protein’s receptor-binding domain immunoglobulin G; NAb, neutralizing antibody;

IQR, interquartile range; SD, standard deviation. The value in bold denotes statistical significance.

https://doi.org/10.1371/journal.pone.0281907.t002
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the S2 subunit, all of which are parts of the S protein [4, 16, 17]. It was found that the strongest

neutralizing epitope was the S-RBD, which was tremendously conserved in all strains of

SARS-CoV-2, making it an ideal target for vaccine development [4].

The subjects who received mRNA-1273 and BNT162b2 vaccines in our study also had

lower IgG levels compared to the subjects reported by Thakkar et al. (1441.10 [2010.76] vs.

11,963 [18,742] AU/mL and 224.68 [1717.37] AU/mL vs. 5,173 [16,699] AU/mL. However,

Thakkar et al. performed the evaluation approximately 30 days after the complete vaccination

dose. Their study also found statistically significant association between the time from vaccina-

tion until IgG testing and antibody levels [1]. Therefore, the NCCN recommends that cancer

patients should receive the third dose of their primary vaccination series and an additional 2

booster doses because the anti-SARS-CoV-2 S-RBD IgG and NAb decrease gradually over

time even after the second dose of COVID-19 vaccination [9].

In this study, when compared between the vaccine types, the subjects who received mRNA-

based vaccine had significantly higher levels of S-RBD IgG and NAb compared to the subjects

who received non-mRNA-based vaccine (Table 2). The subjects vaccinated with mRNA-1273

Fig 2. Horchberg’s GT2 post hoc multiple comparison tests of S-RBD IgG and NAb levels between vaccines. The blue line illustrates the S-RBD IgG

significance between the vaccines, whereas the orange line illustrates the NAb significance. The continuous lines indicate a significant association, whereas the

dashed lines illustrate the absence of a significant association. The sparser the line is, the less significant the association is.

https://doi.org/10.1371/journal.pone.0281907.g002
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had the highest levels of S-RBD IgG and NAb, followed by subjects vaccinated with

BNT162b2, ChAdOx1nCoV-19, and BBIBP-CorV/Coronavac.

Subjects who received Coronavac/BBIBP-CorV develop a lower titer of anti-SARS-CoV-

2-RBD IgG and Nab compared to mRNA vaccines and AZD1222/ChAdOx1nCoV-19 vaccine.

Inactivated-based vaccines work traditionally by activating APCs, which then induce CD4 T-

cells in the presence of IFN- γ, resulting in the secretion of antibodies by B lymphocytes and

the activation of CD8 T-cells, which lead to the apoptotic of infected cells.[18, 19] T-cell

responses are essential to eliminate infected cells. CD4+ cells are crucial for B cell differentia-

tion and the production of high-affinity antibodies in the germinal centers of secondary lym-

phoid organs [20]. The main outcome of the inactivated vaccine immunogenicity was the

humoral immune response [21]. The T-cell responses induced by inactivated vaccines are

poor and have been much less well studied than antibody-mediated immunity [22]. In contrast

with mRNA and viral vector vaccines, which produce robust T cell and humoral immune

responses following vaccination [20].

Several tremendous strategies have been designed for the mRNA vaccine. First, the 5’-cap-

ping is crucial to prevent exonuclease activity from degrading the mRNA, provide efficient

pre-mRNA splicing, and provide a binding site for eIF4F, a component of the heterodimeric

translation initiation complex [23–27]. Second, modifying the nucleosides in mRNA

Fig 3. The scatter plot of NAb by S-RBD IgG, grouped by the types of vaccines and cumulatively. The blue dots and line in the graph illustrate the amount

of NAb (in logX (AU/mL)) by S-RBD IgG (in logX (AU/mL)) for the subjects vaccinated with mRNA vaccines, whereas the red dots and lines illustrate the

amount of NAb (in logX (AU/mL)) by S-RBD IgG (in logX (AU/mL)) for the subjects vaccinated with non-mRNA vaccines. The black line illustrates the

amount of NAb (in logX (AU/mL)) by S-RBD igG (in logX (AU/mL)) for the cumulative group.

https://doi.org/10.1371/journal.pone.0281907.g003
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molecules can prevent the Toll-like receptors (TLRs) from recognizing RNA. Therefore, the

RNA stability is improved by the nucleoside alterations [23, 28, 29]. Third, codon optimization

improves translation efficiency, protein folding, and mRNA abundance. Codon optimization

Table 3. Anti-SARS-CoV-2 antibody level comparison based on subject characteristics.

Characteristics S-RBD IgG NAb

mRNA Non-mRNA p-value mRNA Non-mRNA p-value

mean±SD or median[IQR]

in AU/mL

mean±SD or median

[IQR] in AU/mL

mean ±SD or median[IQR]

in AU/mL

mean ±SD or median

[IQR] in AU/mL

Age

< 60, N = 99 752.24 [3152.92] (N = 41) 104.46 [265.01] (N = 58) <0.001a 299.65 [1288.85] (N = 41) 33.45 [128.11] (N = 58) <0.001a

> = 60, N = 20 1240.75 ± 1656.41 (N = 6) 102.45 [352.24] (N = 14) 0.252b 141.82 [1359.33] (N = 6) 46.24 [166.10] (N = 20) 0.124b

p-value 0.293a 0.723b 0.264b 0.754a

Cancer Type

Hematologic, N = 9 2245.63 ± 2145.41 (N = 6) 5.18 ± 3.59 (N = 3) <0.001 1255.56 ± 1535.98 (N = 6) 6.96 ± 3.5 (N = 3) <0.001

Solid, N = 110 752.24 [2540.21] (N = 41) 106.11 [296.66] {N = 69) <0.001b 226.27 [1028.91] (N = 41) 35.42 [134.94] (N = 69) <0.001a

p-value 0.864a <0.001b 0.736b <0.001a

Prior COVID-19

infection

Yes, N = 27 3680.72 ± 2750.07 (N = 11) 283.96 [638.12] (N = 16) <0.001b 2200.85 ± 1598.99 (N = 11) 153.37 [229.09] (N = 16) <0.001a

No, N = 92 617.24 [8.08] (N = 36) 83.21 [229.71] (N = 56) <0.001c 200.01 [336.31] (N = 36) 25.20 [109.96] (N = 56) <0.001a

p-value 0.005c 0.002b 0.002a <0.001a

Chemotherapy

Yes, N = 96 637.20 [2267.51] (N = 39) 102.13 [307.84] (N = 57) <0.001c 216.65 [921.92] (N = 39) 26.88 [139.43] (N = 57) <0.001a

No, N = 23 3213.11 ± 3175.92 (N = 8) 157.11 [294.50] (N = 15) <0.001b 1064.29 [3293.71] (N = 8) 70.32 [111.69] (N = 15) <0.001b

p-value 0.108c 0.597b 0.135b 0.537a

Chemotherapy

regimen

Single agent, N = 28 662.13 [3050.36] (N = 13) 77.23 [92.50] (N = 15) <0.001b 229.65 [732.98] (N = 13) 26.88 [38.58] (N = 13) <0.001b

Combination, N = 45 456.89 [1381/18] (N = 19) 148.74 [380.05] (N = 26) 0.002b 169.96 [559.35] (N = 19) 67.07 [147.68] (N = 26) 0.002b

No data, N = 46

p-value 0.173b 0.267b 0.299b 0.214b

Time since last

chemotherapy

� 6 months, N = 29 556.64 [1413.67] 166.71 [465.84] 0.129b�� 190.72 [322.86] 64.48 [204.71] 0.055b

> 6 months, N = 67 1490.72 [4266.80] 89.23 [242.30] <0.001b 412.57 [1302.20] 26.26 [124.44] <0.001a

p-value 0.109b� 0.988b 0.121b 0.97d

History of

comorbidities

Yes, N = 37 1579.98 [3858.00] (11) 96.00 [237.25] (26) <0.001b 527.29 [3152.86] (11) 32.27 [118.11] (26) <0.001b

No, N = 82 649.67 [2763.25] (36) 109.28 [369.34] (46) <0.001b�� 215.40 [930.93] (36) 34.96 [153.57] (46) <0.001b

p-value 0.815b� 0.708b 0.307b 0.65b

� 1 dataset was ignored due to being an outlier that challenge the normality of the data

�� 2 dataset was ignored due to being an outlier that challenge the normality of the data
aTested using Mann-Whitney U test
bTested using t-test after data transformation into logX
cTested using t-test after data transformation into (logX)2

dTested using t-test after data transformation into -1/
p

X

Abbreviation: S-RBD IgG, spike protein’s receptor-binding domain immunoglobulin G; NAb, neutralizing antibody; IQR, interquartile range; SD, standard deviation.

https://doi.org/10.1371/journal.pone.0281907.t003
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is critical for mRNA stability because the rate of codon-dependent translation elongation has

been identified as a primary factor of mRNA stability [23, 30]. Fourth, the lipofectin-based

Table 4. Anti-SARS-CoV-2 antibody level comparison based on subject characteristics after exclusion of subjects with prior COVID-19 infection.

S-RBD IgG NAB

mRNA Non-mRNA p-value mRNA Non-mRNA p-value

Mean ±SD or median

[IQR] in AU/mL

Mean ±SD or median

[IQR] in AU/mL

Mean ±SD or median

[IQR] in AU/mL

Mean ± SD or median

[IQR] in AU/mL

Cummulative, N = 92 617.24 [1338.08] (N = 36) 83.31 [229.71] (N = 56) <0.001c 200.01 [336.21] (N = 36) 25.19 [109.96] (N = 56) <0.001a

Age

< 60, N = 77 617.24 [1235.02] (N = 30) 85.12 [230.21] (N = 47) <0.001b 208.70 [303.82] (N = 30) 24.72 [114.38] (N = 47) <0.001a

�60, N = 15 560.49 [2370.72] (N = 6) 134.53 ± 172.70 (N = 9) 0.134b 141.82 [1359.33] (N = 6) 26.88 [81.96] (N = 9) 0.045b

p-value 0.268b 0.346b 0.612b 0.514e

Cancer Type

Hematologic N = 7 2331.72 ± 2512.72 (N = 4) 5.18 ± 3.59 (N = 3) 0.161 1309.72 ± 1885.10 (N = 4) 6.96 ± 3.50 (N = 3) 0.289

Solid N = 85 617.24 [1198.76] (N = 32) 89.23 [235.06] (N = 53) <0.001b 200.01 [284.53] (N = 32) 26.26 [112.20] (N = 53) <0.001a

p-value 0.555b <0.001b 0.649b 0.002a

Chemotherapy

Yes, N = 76 1375.30 [3621.83] (N = 30) 141.77 [233.35] (N = 46) <0.001b 380.00 [2031.92] (N = 30) 52.41 [110.09] (N = 46) <0.001b

No, N = 16 1406.69 ± 2134.89 (N = 6) 201.97 ± 351.91 (N = 10) 0.005 183.10 [284.07] (N = 6) 94.07 ± 210.43 (N = 10) <0.001a

p-value 0.212c 0.469b 0.174b 0.264e

Chemotherapy regimen

Single agent, N = 22 646.45 [2010.76] (N = 11) 67.23 [94.85] (N = 11) <0.001b 226.72 [566.40] (N = 11) 24.72 [25.41] (N = 11) <0.001b

Combination, N = 35 433.68 [422.21] (N = 14) 102.13 [252.31] (N = 21) 0.003c 155.84 [163.17] (N = 14) 26.26 [107.24] (N = 21) 0.005b

Received no chemotherapy,

N = 16

p-value 0.065c 0.489b 0.102b 0.459b

Time since last

chemotherapy

� 6 months, N = 22 456.89 [501.01] (N = 13) 67.23 [246.61] (N = 9) 0.037c 168.34 ± 120.25 (N = 13) 24.72 [120.95] (N = 9) 0.036a

> 6 months, N = 54 2066.72 ± 2644.02 (N = 17) 215.93 ± 383.43 (N = 37) 0.011 216.65 [759.81] (N = 17) 22.20 [106.78] (N = 37) <0.001e

Received no chemotherapy,

N = 16

p-value 0.031c 0.442b 0.137a 0.567e

History of comorbidities

Yes, N = 31 725.24 [4515.25] (N = 9) 96.02 [238.50] (N = 22) 0.001b 232.70 [3129.49] (N = 9) 30.90 [118.11] (N = 22) <0.001b

No, N = 61 596.94 [1274.69](N = 27) 66.33 [228.83] (N = 34) <0.001c 190.72 [304.47](N = 27) 23.69 [107.91] (N = 34) <0.001e

p-value 0.282c 0.627b 0.187b 0.588e

Days from Second

Vaccination to Screening

�90 days 641.83 [1648.90] (N = 30) 240.88 ± 228.85 (N = 12) 0.002c 209.95 [425.38] (N = 30) 82.23 [162.56] (N = 12) 0.003b

>90 days 365.02 ± 2200.78 (N = 6) 70.20 [170.56] (N = 44) 0.022b 119.05 ± 90.04 (N = 6) 21.81 [81.82] (N = 44) 0.049e

p-value 0.129c 0.240b 0.090b 0.128e

� 1 dataset was ignored due to being an outlier that challenge the normality of the data

�� 2 dataset was ignored due to being an outlier that challenge the normality of the data
aTested using Mann-Whitney U test
b Tested using t-test after data transformation into logX
cTested using t-test after data transformation into (logX)2

dTested using t-test after data transformation into -1/
p

X
edTested using t-test after data transformation into log(logx)

https://doi.org/10.1371/journal.pone.0281907.t004
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carriers enhance the mRNA transport into target cells as well as protect the mRNA from

RNase [23, 31, 32].

Furthermore, the mRNA vaccine also has a strategy that will induce more robust cellular

expression of S via major histocompatibility complex (MHC) class I. The BNT162b1 vaccine

optimizes their immunogenicity by encoding the trimerized RBD and producing stronger cel-

lular immunity such as CD4+ and CD8+ T-cells. The mRNA-1273 vaccines, aside from induc-

ing a robust CD8+ T-cell response, they also maintain the balance between the T helper type I

(Th1) and T helper type II (Th2) responses [4, 33–35].

Those beneficial mechanisms made mRNA vaccines have a special strength, as it has been

reported that they can stimulate not only humoral adaptive responses, but also cellular adap-

tive responses, including the activation of T helper cells and cytolytic T lymphocytes. There-

fore, the diversity in vaccine design as well as the laboratory-proven potential to generate

higher levels of S-RBD IgG and NAb make the mRNA vaccines hailed as the most promising

vaccine candidates in the battle against the COVID-19 pandemic [23].

Fig 4. The scatter plots of S-RBD IgG in logX (AU/mL) by NAb in logX (AU/mL) in each subject’s characteristics who received BBIBP-CorV/Coronavac

vaccines. (A) cumulative; (B) subjects less than 60 years old; (C) subjects over 60 years old; (D) subjects with hematologic cancer; (E) subjects with solid cancer;

(F) subjects treated without chemotherapy; (G) subjects treated with chemotherapy; (H) subjects received single agent chemotherapy; (I) subjects received

combination chemotherapy regimens; (J) subjects without a history of comorbidity; (K) subjects with a history of comorbidity; (L) time since last

chemotherapy�6 months; (M) time since last chemotherapy>6 months. �Analyzed by Pearson correlation test after transformation into logX (AU/mL).
��Analyzed by Kendall correlation test. ���Analyzed by Pearson correlation test. Abbreviation: S-RBD IgG, antibodies against receptor-binding domain of

SARS-CoV-2 spike protein; NAb, neutralizing antibody.

https://doi.org/10.1371/journal.pone.0281907.g004
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In viral vector-based vaccines, the vaccine particles will be identified by the innate immune

response. Then, the APCs will interact with the MHC I and II molecules. These interactions

activate the CD4 T-cells and the CD8 T-cells to produce IL2, IL12, TGF, and IFN-γ cytokines.

Furthermore, the CD8 T-cells become memory T-cells. The Th2 then interact with the MHC

II receptors on the surface of the B-cells, leading them to produce IL4, IL5, IL6, IL10, and

TGF-β to stimulate B-cells activation and differentiation into plasma cells and memory B-cells.

The plasma cell produces NAbs that are responsible for clearing the infection [36–39].

As can be observed in Fig 2, both the levels of S-RBD IgG and NAb show a significant dif-

ference between mRNA and non-mRNA-based vaccines. Several studies reported that the

NAb contracted faster and earlier than the IgG. However, IgG levels reach a higher peak and

have a longer lifespan than NAb [40–43]. A cohort study that was conducted by Terpos et al.

showed that up to 6 months post-symptom onset (PSO), the estimated half-life for the S-RBD

IgG and NAb were 62 and 47 days, respectively. After 6 months of infection, the estimated

half-life for the S-RBD IgG and NAb were declining to 212 and 27 days, respectively [42]. A

systematic review by Post et al. revealed that the IgG levels peaked 3–7 weeks post symptom

onset, then plateaued and remained stable for at least 8 weeks [43].

The binding of NAb to the ACE-2 binding site on the RBD inhibits viral entry [3]. A study

by Barnes et al. divided the NAb structure into several categories. First, the NAb that is gener-

ated by the VH3-53 gene section with short CDRH3 loops that bind exclusively to “up” RBDs

and inhibit ACE-2; second, the NAb that inhibits the ACE-2 receptor and binds both “up” and

“down” RBDs, as well as the adjacent RBD [44–46]; third, the NAb that identifies “up” and

“down” RBD and binds outside the ACE-2 site; fourth, the antibody previously described that

binds selectively to “up” RBD and does not inhibit the ACE-2 receptor [44, 47]. Category 2

consisted of four NAbs with RBD-bridging epitopes, including a VH3-53 antibody that

spanned between two down RBDs using an extensive CDRH3 with a hydrophobic tip that pre-

served the spike in a closed configuration. The structures indicate an abundance of unexpected

interactions between the NAb and the spike protein, most notably the antibody that has been

identified to reach over adjacent RBD on the protomer of a single trimer. Additionally, the crys-

tal structures of Fab-monomeric RBD complexes are beneficial for identifying the flexible "up"

or "down" RBD configurations on the spike trimer that are targeted for neutralization [44].

Furthermore, not all antibodies are NAbs. Some are classified as binding antibodies. anti-

SARS-CoV 2 was divided into NAb and non-neutralizing antibody (non-NAb) based on its

effect. NAb is an antibody that inhibits the binding between pathogen and host (neutraliza-

tion). NAb mainly refers to the receptor binding domain of S-protein (S-RBD), which prevents

the binding of subunit to ACE-2 receptor [3, 48]. The term “neutralizing” refers to the anti-

bodies’ ability to inhibit the initial pathogenic step by itself, making it crucial to achieve protec-

tion against SARS-CoV-2 [49]. Neutralization by NAbs can be achieved before the pathogen

attachment to the host cells (by aggregation, immobilization, or destabilization), during the

interference with the pathogen attachment (by physically blocking viral fusion to target cells),

and during the post-attachment neutralization (inhibition of fusion and other steps) [3, 50–53].

Antibodies may also interact with some immune components and activate a complement cas-

cade, which stimulates other immune responses such as cell lysis, lymphocyte recruitment, and

antigen internalization. This leads to antibody-mediated pathogen clearance [3, 54]. Immuno-

globulin (Ig) is a class of antibodies that comprises of IgA, IgM, and IgG, which has a role in

neutralizing SARS-CoV-2. However, the maximum neutralization activity against SARS-CoV-2

is only accomplished when all three immunoglobulin classes (IgG, IgM, and IgA) are detected

[3, 55].

As can be observed in Figs 3 and 4, the strong correlation between NAb and S-RBD IgG in

inactivated, mRNA, and non-mRNA-based-vaccines has indicated that when the NAb cannot
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be detected, the S-RBD IgG can be detected instead. This is due to the synergetic characteristic

of the S-RBD IgG that will also be in the high level as does NAb. However, when the IgG level

is high, the NAb level may not also be high due to the maximum neutralization that has not

been achieved by the increase in the IgG alone [3, 56–58].

A study by Ju et al. supports the findings of our data and concluded that the competition

between NAb and ACE-2 may be a stronger indicator for the efficacy of virus-neutralizing

antibodies than for the binding affinity. Therefore, inhibiting the interaction between RBD

and ACE-2 receptor may serve as a suitable surrogate for neutralization. The anti-RBD anti-

bodies are indicated to be predominantly viral species-specific inhibitors due to the crystal

structure of RBD-bound antibody impeding the RBD’s binding to ACE-2, thus blocking the

viral binding and entry [3, 58, 59]. This finding and explanation could be the answer to the

unclear correlation between NAb and S-RBD IgG.

In this study, subjects less than 60 years old vaccinated with mRNA-based vaccines had the

capability to produce higher S-RBD IgG and NAb levels compared to the subjects vaccinated

with non-mRNA-based vaccines (Table 4). In subjects older than 60 years, the NAb was found

to be significantly higher in mRNA group compared to non-mRNA group. However, there

was no significant difference in the S-RBD IgG level in subjects over 60 years old. Evidence

revealed that the S-RBD IgG level had higher sensitivity and specificity than NAb in evaluating

the efficacy of COVID-19 vaccines [60]. These findings revealed that patients over the age of

60 had a poorer immune response to the vaccine than patients under the age of 60. Xia et al.

found that the level of NAb in subjects over the age of 60 was lower than in people under the

age of 60 [61].

Immunological system aging, or immunosenescence, is associated with a loss in immune

function and prolonged activation of inflammation, which increase the vulnerability to viruses

and decrease the responses to vaccination. Over time, aging also causes a gradual reduction of

T-cells. The involution of the thymus is associated with alterations in the ratio of naïve T-cells

to memory T-cells, which results in a greater proportion of memory T-cells in elderly people

[62–65]. While T-cells tend to experience more extensive alterations as they age whereas B-

cells only undergo gradual alterations as they age [66, 67]. The overall amount of B-cells

decreases gradually with age, both in the periphery and bone marrow [62, 68].

In subjects with solid malignancies, the levels of S-RBD IgG and NAb antibodies were sta-

tistically significantly higher in the subjects receiving the mRNA vaccines compared to non-

mRNA vaccines (Table 4). However, the levels of S-RBD IgG and NAb showed no significant

differences among subjects with hematologic malignancies. Thakkar et al. revealed that sub-

jects with hematologic malignancies had a significantly lower seropositivity rate compared to

the subjects with solid tumors (85% vs. 98%, p = 0.001). They also reported that the IgG levels

were significantly lower in the subjects with hematologic malignancies compared to the sub-

jects with solid tumors (7,858 AU/mL, SD 18,103 vs. 2,528 AU/mL, SD 12,338, p = 0.013) [1].

Therefore, patients with hematologic cancers had higher immunosuppression conditions due

to their immune system impairment, intrinsic frailty, or cancer therapies that can lead to sig-

nificant lymphodepletion and myelosuppression. These conditions also led to a worse immune

response to vaccination and increased the morbidity and mortality rate. As a result, individuals

with haematological malignancies remain a high-risk population until the efficacious vaccines

are invented [69–72].

In Table 4, three subjects with hematologic cancer showed no response to non-mRNA vac-

cines. They were the same subjects who received B-cell depleting therapy (rituximab). There is

evidence that B cell-depleting therapy with rituximab (RTX) affects the humoral immune

response after vaccination [73]. In a cohort study of subjects with hematologic and solid malig-

nancies, those who received anti-CD20 therapy developed no antibody response. A
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longitudinal study of anti-spike revealed that B-cell targeted therapies were associated with

reduced peak and sustained antibody responses [74]. In response to specific stimuli, B cells

have the potential to regulate CD8+ T cell responses. Depletion of B cells decreases the efficacy

of the cellular response, which includes cytotoxic T cells [75]. B cells play an important role in

the development of humoral immunity. Mrak et al. found that the S-RBD antibody correlates

with the number of B cells in the peripheral blood, implying that the presence of B cells is

required for mounting a humoral response. SARS-CoV-2 RBD-specific antibodies showed a

strong correlation with neutralizing activity, providing evidence for a protective antibody

response. Their findings concluded that peripheral B cells are essential for both the quality and

quantity of the humoral response following COVID-19 vaccination. Non-seroconverted

patients have impaired humoral immunity due to the lack of peripheral B cells [73].

This research also demonstrated that the subjects with either single or combination chemo-

therapy vaccinated with mRNA vaccine also had greater levels of NAb and S-RBD IgG com-

pared to the subjects with non-mRNA vaccines (Table 4). There is a concern that the cytotoxic

chemotherapy will reduce the efficacy of SARS-CoV-2 vaccines in eliciting the humoral

immune response due to these drugs affecting the bone marrow and suppresses the immune

system. Interestingly, multiple studies revealed that cancer patients receiving chemotherapy

had lower antibody titers compared to healthy subjects [76–79]. Cytotoxic chemotherapy can

alter the DNA synthesis, replication, and cell cycle progression of rapidly proliferating lym-

phocytes upon immunological activation.[69, 80]. However, in this study, the COVID-19 vac-

cines were proven to be efficacious among the cancer patients treated with either single or

combination chemotherapy (Table 4).

Subjects who received COVID-19 vaccination with the last time chemotherapy� 6 months

and> 6 months showed no such significant difference in S-RBD IgG and NAb levels. The

optimal timing of vaccine administration for patients who received chemotherapy has not

been established by the guideline yet. Some recommendations in certain circumstances were

established. Patients already on cytotoxic chemotherapy recommended to get vaccines in

between chemotherapy cycles. Patients completing cytotoxic therapy recommended to be vac-

cinated after therapy is completed. Further studies are required to fill these gaps and larger

studies that include cancer patients are warranted to have a better understanding of the opti-

mal timing of the vaccinees in cancer patients [81].

Aditionally, in this study, the levels of NAb and S-RBD IgG were not significantly different

between patients with and without comorbidities. This finding was in line with a study by

Dundar et al., which showed there was no significant correlation between comorbidities and

antibody levels post COVID-19 vaccinations [82].

In groups� 90 days and> 90 days from second vaccination to screening, m-RNA based

vaccines produced S-RBD IgG and NAb at a significantly higher levels than non-mRNA based

vaccines (Table 4). T-test analysis demonstrated that there was no significant difference in

S-RBD IgG and NAb levels between< 90 days and� 90 days. A cohort study by Campo et al.

demonstrated that antibodies remained persistent 6 months after receiving two doses of the

COVID-19 vaccines [83]. A study by Doria-Rose et al., also revealed that antibodies were still

persistent 6 months after receiving the second dose of the mRNA-1273 vaccination [84].

Another study by Lai et al. showed the antibody had no significant difference when comparing

two time points at months 2 and 6 after second doses of COVID-19 vaccines [85]. These stud-

ies were in line with our study, which collected the samples within 6 months due to antibody

could persist for 6 months after receiving the second dose of COVID-19 vaccines.

This cross-sectional study has several limitations. This study has potential confounders

which affect the outcome of the study. One of the influential confounders is the heterogenous

types of cancer with each type having different cancer treatments and prognoses that may
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affect the efficacy of COVID-19 vaccines. However, despite this confounding factor, the

mRNA vaccines proved to be highly effective among cancer patients. The sample acquisition

time was considered as the limitation of the study due to the fact that during the recruitment,

most cancer patients had received two doses of COVID-19 vaccines more than 3 months

before the study was held. The COVID-19 national mass vaccination program in Indonesia

commenced at February 2021. This study recruitment process started in October 2021. At that

time, national COVID-19 vaccination coverage had reached 75%, which it became unreach-

able to recruit recently vaccinated cancer patients at specific time point. Furthermore, there

was no healthy control group as reference population. This should be considered to improve

the design and participants selection in further studies.

Conclusion

Generally, mRNA-based vaccines produced significantly higher levels of S-RBD IgG and NAb

than non-mRNA-based vaccines when compared across all subject characteristics. The levels

of S-RBD IgG were consistently higher in all vaccines compared to the levels of NAb. There

was a significantly positive strong correlation between S-RBD IgG and NAb levels among can-

cer patients who had received either mRNA or non-mRNA-based vaccines.
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