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Highlights
Long COVID has a multifactorial nature
with multiple pathophysiological factors
at play.

Viral factors, host factors (including
systemic inflammation, and metabolic,
endocrine, and endothelial dysfunction)
and downstream impacts (tissue dam-
age from the initial infection, hypoxia,
dysbiosis, and autonomic nervous
system dysfunction) are key elements
underpinning the condition.

Various factors culminate in the long-
Acute COVID-19 infection is followed by prolonged symptoms in approximately
one in ten cases: known as Long COVID. The disease affects ~65 million individ-
uals worldwide. Many pathophysiological processes appear to underlie Long
COVID, including viral factors (persistence, reactivation, andbacteriophagic action
of SARSCoV-2); host factors (chronic inflammation, metabolic and endocrine dys-
regulation, immune dysregulation, and autoimmunity); and downstream impacts
(tissue damage from the initial infection, tissue hypoxia, host dysbiosis, and auto-
nomic nervous system dysfunction). These mechanisms culminate in the long-
term persistence of the disorder characterized by a thrombotic endothelialitis,
endothelial inflammation, hyperactivated platelets, and fibrinaloid microclots.
These abnormalities of blood vessels and coagulation affect every organ system
and represent a unifying pathway for the various symptoms of Long COVID.
term persistence of the disorder
(i.e., a thrombotic endothelialitis char-
acterized by endothelial inflammation,
hyperactivated platelets, and fibrinaloid
microclots).

We suggest a multipronged treatment
agenda for Long COVID treatment trials,
incorporating drugs targeting all potential
mechanisms, including viral persistence,
autoimmunity, immune dysregulation,
and gut dysbiosis; with endothelialitis
and coagulation abnormalities as two
priorities.
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Introductory overview and classification of Long COVID
Coronavirus disease (COVID-19) is an airborne infectious disease caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. It has had a disastrous effect on the
world’s demographics, resulting in more than 6.5 million deaths worldwide [2]. It represents
the worst global health crisis since the influenza pandemic of 1918 [2]. Since theWHO declared
a global pandemic, COVID-19 has overwhelmed and crippled healthcare systems around
the world.

Most people infected with the virus will experience a mild to moderate illness and recover without
specialized treatment [3]. Common symptoms of acute COVID-19 include profound fatigue,
breathlessness, cough, chest pain, palpitations, headache, joint pain, myalgia, weakness, insom-
nia, pins and needles, hair loss, impaired balance, neurocognitive issues including memory and
concentration problems, anxiety, depression, and loss of taste and smell [4]. However, some suf-
ferers have experienced more serious complications, such as coagulopathy, thromboembolism,
multiorgan failure, septic shock, and death [3].

While symptoms usually only last for up to 2–3 weeks, ~10% of patients experience continued
or new symptoms beyond the acute phase; this condition is known as Long COVID/post-acute
sequelae of COVID-19 (PASC) [5]. Hereafter, we refer to the illness by the patient-defined term
‘Long COVID’ [6]. In this condition, there may be persistence of symptoms of acute COVID, or
the appearance of new symptoms unrelated to the acute illness. In some cases, the ‘acute’
phase may have been almost asymptomatic. Depending upon the duration of symptoms,
Long COVID can be divided into two stages. ‘post-acute COVID’ is the term used to describe
symptoms that extend beyond 3 weeks and up to 12 weeks, and ‘chronic COVID’ is where
symptoms extend beyond 12 weeks [4,7]. Persistence of symptoms has now been observed
for up to 3 years [8,9].
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Here, we shed light on the various pathophysiological factors that contribute to Long COVID and
highlight the resultant blood abnormalities. The first three sections examine the prevalence and
manifestations, risk factors and predictors, and subtypes of Long COVID. We also briefly discuss
the effects of vaccination in the context of Long COVID. Following this, we discuss the patho-
physiological factors that can contribute to Long COVID and the symptoms that ensue. This sec-
tion is divided into three parts: viral factors, host factors, and downstream impacts. To provide a
comprehensive picture of how these factors contribute to abnormal coagulation, the next section
outlines the interplay between systemic inflammation and coagulation. We summarize findings
that point to a failed fibrinolytic system [1,8,10–12]. Finally, we discuss in detail the abnormalities
of coagulation observed in Long COVID.

Prevalence and manifestations of Long COVID
Long COVID has resulted in a major global health and economic burden, with at least 65 million
individuals around the world having Long COVID [13]. In the USA, economists have estimated
that Long COVID will incur cumulative future costs of more than US$4 trillion [14].

Approximately 87% of people who recover from COVID-19 and are discharged from hospital ex-
hibit at least one symptom of Long COVID after 60 days, 32% have one or two symptoms,
whereas 55% have three or more [15,16]. The most common symptoms are fatigue (53.1%),
shortness of breath (43.4%), joint pain (27.3%), and chest pain 21.7% [15]. Other less prevalent
symptoms include cough, skin rashes, palpitations, headache, and ‘pins and needles’ sensa-
tions. Research has shown that the most common Long COVID symptoms are fatigue, cognitive
dysfunction (‘brain fog’), shortness of breath, as well as joint and muscle pains [8]. Unsurprisingly
for a postviral illness, most individuals with Long COVID exhibit postexertional symptom exacer-
bation (PESE) [13,17]; in addition, 50% of people with Long COVID meet the criteria for myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS) [17–19].

Many patients struggle to do basic daily activities and experience a wide range of secondary men-
tal health issues. In a large global survey of 3762 patients with Long COVID across 56 countries,
approximately half were unable to work full-time 6 months post infection, primarily due to fatigue,
postexertional malaise, and cognitive dysfunction [20].

Children of all ages can also develop Long COVID. Surveys demonstrate that they experience the
full range of symptoms seen in adults [21–23]. Notable manifestations in children include brain
hypometabolism, hepatic involvement, ME/CFS, and pulmonary abnormalities [21,24,25].

Risk factors and predictors of Long COVID
Various risk factors influence the precise presentation of Long COVID in a particular patient. The
number and type of symptoms during the initial infection are strong predictors of Long COVID.
Those who experience more than five symptoms during the first week of infection are more likely
to develop Long COVID, irrespective of age or gender [26–28]. Specific symptoms during the first
week that are predictive of Long COVID include fatigue, headache, shortness of breath, and
muscle pains [27,28]. Other risk factors for Long COVID include age (47% risk in those
50 years and above), and comorbidities such as hypertension, dyslipidemia, cardiovascular
disease, and metabolic and endocrine dysregulation [e.g., body mass index (BMI) >30, and
type 2 diabetes mellitus (T2DM)] [8,29,30]. Women have greater prevalence, lower mortality,
lower levels of inflammation, higher lymphocyte counts, and faster antibody responses compared
with men [31]. This suggests that male sex is an independent risk factor for COVID-19 infection
and death, but not for Long COVID itself. Long COVID also appears to be more prevalent
among disadvantaged ethnic and socioeconomic groupsi [32,33].
322 Trends in Endocrinology & Metabolism, June 2023, Vol. 34, No. 6

http://dbkgroup.org/
http://www.resiapretorius.net/
CellPress logo


Trends in Endocrinology &Metabolism
OPEN ACCESS
Subtypes of Long COVID: implications for treatment
Although millions of people are living with symptoms of Long COVID, what remains striking is the
heterogeneity of the clinical syndrome [34]. This is due, in part, to the fact that the term encom-
passes many different clinical conditions with distinct pathobiological processes at play. Over
time, the groups that advocated for the creation of the terms ‘Long COVID’ (patient created),
‘Long Haul COVID’ (patient created), ‘Post-Acute Sequelae of COVID-19’ (National Institutes of
Health and Centers for Disease Control and Prevention) and ‘Post-COVID-19 Condition’ (WHO)
have reached a level of tacit agreement that these terms are, in fact, describing the same broad
clinical presentation: namely, any person who has survived an acute SARS-CoV-2 infection but
is still experiencing persistent symptoms months after their acute symptoms have resolved. We
continue to use the name ‘Long COVID’ in this paper because it is the most widely used patient-
derived term, althoughwe acknowledge that these other terms broadly describe the samedisease.

One of the first distinctions that clinicians and researchers evaluating patients with Long COVID
must establish is whether the symptoms can be linked to organ dysfunction that is evident from
mainstream clinical investigations. For instance, consider a hypothetical patient hospitalized for a
severe COVID-19 pneumonia. This patient may continue to experience shortness of breath,
chest pain, and exertional intolerance for months after the initial infection, meeting criteria for a diag-
nosis of Long COVID. If these impairments are accompanied by clear changes in pulmonary func-
tion testing and pulmonary fibrosis on imaging, then it is possible that this patient will have a positive
response to traditional pulmonary rehabilitation efforts. By contrast, consider a second hypothetical
patient whowas infectedwith SARS-CoV-2, but experienced less-severe illness that did not require
hospitalization. Following resolution of the acute COVID-19 symptoms, this patient goes on to de-
velop extreme fatigue, shortness of breath, chest pain, and exertional intolerance. Although these
postacute symptoms are severe and the patient meets criteria for a diagnosis of Long COVID,
most of their mainstream clinical investigations return normal (or near normal) and do not correlate
with symptom severity. In these cases, as we have learned from other postviral illnesses, such as
ME/CFS, interventions including pulmonary rehabilitation are likely to significantly worsen symptoms
due to PESE [17,35–37]. Therefore, there is a critical need to create diagnostic criteria and biomark-
ers that can assist in differentiating the different endotypes of Long COVID to ensure that precision
medicine approaches can be applied to each endotype. Here, we propose a naming convention
that seeks to better identify those with ‘Syndromic’ or ‘Non-Syndromic’ Long COVID, acknowledg-
ing that some patients may exhibit elements of both and must be managed accordingly.

In addition to identifying different endotypes of Long COVID, care must also be taken to avoid a
misdiagnosis of Long COVID when a patient is simply experiencing a long-tail recovery from
COVID-19 (Figure 1). The initial clinical case definition offered by the Centers for Disease Control
and Prevention (CDC) in the USA stated that a Long COVID diagnosis should be considered if
symptoms are persisting beyond 1 month of the initial infectionii,iii. However, the WHO clinical
case definition differs by recommending consideration of the diagnosis if symptoms persist be-
yond 3 months of the initial infection [38]. Although cases of prolonged recovery to COVID-19
can closely resemble a diagnosis of Long COVID, given time the former will gradually and spon-
taneously recover. This is not the pattern for Long COVID.

Finally, the interaction of COVID-19 with pre-existing complex chronic illness results in a potentially
distinct set of endotypes of Long COVID. For instance, emerging evidence suggests that individ-
uals with pre-existing immune issues and chronic viral infections and reactivations are more sus-
ceptible to Long COVID [39,40]. However, what remains unclear is whether these individuals are
experiencing an infection-triggered worsening of their pre-existing diagnosis and pathophysiology,
or the same condition as the rest of the population with Syndromic Long COVID. Thus, the
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Figure 1. Long COVID subtypes, including Non-Syndromic Long COVID, Syndromic Long COVID, and ‘Red herrings’. Patients with Non-Syndromic Long
COVID may have had a severe acute infection that resulted in hospitalization and caused significant organ damage and dysfunction. This subtype may respond well to
traditional interventional approaches, such as pulmonary rehabilitation. By contrast, patients with Syndromic Long COVID might have had a mild acute infection that did
not require hospitalization, but develop extreme fatigue, shortness of breath, chest pain, and exertional intolerance. This subtype tends to not respond well to
conventional treatments. Within this subtype, certain pre-existing chronic illnesses, such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), may be
worsened by the acute COVID. Furthermore, ‘Red herrings’ is the long tail recovery from acute COVID, where symptoms gradually resolve within a few months without
any intervention. Abbreviation: PESE: Post-Exertional Symptom Exacerbation.
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interaction of Long COVID with pre-existing complex chronic illness is an area that requires active
investigation so that all patients with a Long COVID diagnosis can access evidence-based, preci-
sion medicine approaches.

Vaccination and Long COVID
Studies looking at the impact of vaccination on the likelihood of developing Long COVID have
yielded conflicting results. A recent systematic review suggested that, overall, vaccination is asso-
ciated with a reduced risk of Long COVID, with two doses conferring greater protection than one
[41]. However, there are also studies showing no reduction in the risk of Long COVID following
vaccination [42]. Research looking at the impact of vaccination on existing Long COVID has
also yielded varying results, with improvement, no change, and worsening all being reported
[41,43]. These inconsistent results could partly be due to heterogeneity of study design, inclusion
criteria, and the definition used of Long COVID [13].

An additional consideration is the varying impact of vaccination on the risk of developing Long
COVID following different variants. As an example, double-vaccinated individuals with Omicron
BA.1 were half as likely to develop Long COVID compared with double-vaccinated individuals
324 Trends in Endocrinology & Metabolism, June 2023, Vol. 34, No. 6
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with Delta [44]. We still do not fully understand the interplay between multiple infections with dif-
ferent variants and multiple, sometimes different, vaccines administered to an individual patient.

The benefits of vaccination far outweigh any pitfalls. However, similar to any other vaccine, indeed
any other drug, COVID-19 vaccination can, in some cases, result in significant adverse effects
(vaccine injury) [45]ii. The presentation can be very similar to Long COVIDiv. As with virus-
induced Long COVID, the mechanisms involved are not fully defined; coagulopathy may be
one potential explanation, because the spike protein has been shown to bind to fibrinogen
in vitro, giving rise to anomalous fibrin microclots [10]. However, there may be other factors at
play that are yet to be defined. Unfortunately, there is hesitancy among patients and researchers
to acknowledge and openly discuss vaccine injury, due to fear of being labeled ‘anti-vax’iv. Pa-
tients with vaccine injury should be able to access medical care without fear of being stigmatized,
and vaccine injury should be researched like any other disease. This will facilitate the development
of better vaccines and help us identify those at higher risk of an adverse event.

Pathophysiology of Long COVID
Viral factors
Viral persistence
Viruses (and indeed bacteria [46]) can be present in a chronically lytic and/or latent form in the host
after the initial phase of infection [47–52]. Persistent infections are characterized as those in which
themicrobe and/or its fragments are not cleared from the host following primary infection [51]. Certain
viruses, such as varicella-zoster virus (VZV), HIV, hepatitis C virus (HCV), Epstein–Barr virus (EBV), and
human papillomavirus (HPV), are notorious for remaining in the body and causing pathology [51].

There is growing evidence that, in some patients with Long COVID, SARS-CoV-2 may persist in
tissue reservoirs after acute infection [47–51,53]. These hidden viral reservoirs may trigger re-
peated immune responses that contribute to persistent symptoms. Months after infection, viral
mRNA and spike protein from SARS-CoV-2 have been detected in the digestive system and uri-
nary tract of patients with Long COVID [54] through immunofluorescence and PCR analysis of in-
testinal biopsies. Other studies have also detected SARS-CoV-2 in multiple organs and in feces,
indicating prolonged viral shedding [55–57].

The main virulence factor of SARS-Cov-2, the spike protein, is a key element for viral attachment to
target cells through angiotensin-converting 2 enzyme (ACE-2) surface receptors [58], TMPRSS-1
receptors, and extracellular vimentin [10,59]. Spike proteins are class I viral fusion proteins that are
present as protruding homotrimers on the viral surface; they facilitate virus entry into target host
cells [60,61]. An isolated spike protein is between 180 and 200 kDa in size and contains an extra-
cellular N terminus, a transmembrane domain fixed in the membrane of the virus, and a short intra-
cellular C-terminal segment [60,62]. The S1 subunit permits receptor binding to the host cell [63],
whereas the S2 subunit enables viral fusion and entry [64]. However, receptor binding alone does
not solely explain the cell-mediated pathologies present in the disease [65].

Spike protein can be shed by the host cell itself via extracellular vesicles (EVs) and spread via the
circulatory system to distant tissues and organs [64]. EVs are bilayer lipid membrane-bound
structures released from host cells, such as neutrophils, monocytes, lymphocytes, platelets,
epithelial cells, and endothelial cells (ECs), under physiological and pathological conditions [64].
These vesicles may contain biologically active compounds, such as mRNA, miRNAs, DNA, lipids,
and assorted proteins. The main function of these EVs is to transport cargo to neighboring or dis-
tant cells to support homeostasis [66]. Extracellular vesicles also share certain resemblances with
viruses, such as small size, biogenesis mechanism, and cell entry mechanism [67].
Trends in Endocrinology & Metabolism, June 2023, Vol. 34, No. 6 325
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Once the spike protein has attached to the host cell and replication is complete, SARS-CoV-2
buds in the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) or in the Golgi
apparatus (Figure 2). Finally, SARS-CoV-2 can exit the cell via a biosynthetic secretory pathway
TrendsTrends inin EndocrinologyEndocrinology & MetabolismMetabolism

Figure 2. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): receptor binding, entry into host cell, replication, and transport to other tissues
(1) SARS-CoV-2 enters host cells through angiotensin converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) receptors, as well as extracellular
vimentin. The S1 subunit permits receptor binding and S2 facilitates entry and fusion. (2–4) Once inside the host cell, viral replication occurs. (5–8) SARS-CoV-2 buds in the
endoplasmic reticulum–Golgi intermediate compartment (ERGIC) or Golgi apparatus and exits the cell via a biosynthetic secretory pathway. SARS-CoV-2 can also hide in
extracellular vesicles (EVs) and reattack various tissues and organs through the circulatory system. Figure created with BioRender (https://biorender.com/).
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[68,69]. In Long COVID, SARS-CoV-2 may hide in these EVs and reattack various tissues
and organs through the circulatory system. This may contribute to the symptoms of
Long COVID [67].

Reactivation of latent viruses
It is well understood that, as with dormant bacteria [46,70], humans can harbor dormant viruses
that persist in a latent form without causing pathology [49]. These dormant viruses may reactivate
under conditions of stress or immunosuppression [20,49,71]. If the immune response is weak-
ened, challenged, or dysregulated, these dormant viruses may become reactivated and alter
human gene expression, protein production, and immune regulation [49]. This sequence of
events allows the virus to infect new body sites and drive new chronic symptoms. This has
also been demonstrated during and after COVID-19 infection, where previously dormant viruses,
such as EBV, herpes simplex virus, and HCV, are reactivated in various organs [49,72,73]. These
viruses have been tied to the development of several chronic conditions, such as Alzheimer’s dis-
ease, cancer, rheumatoid arthritis, and type 1 diabetes mellitus (T1DM), and may be one expla-
nation for why some patients develop chronic conditions after COVID-19 infection [49].

Bacteriophage-like actions of SARS-Cov-2
Previously, it was assumed that SARS-CoV-2 can only replicate and survive in mammalian
eukaryotic cells. However, it has recently been suggested that SARS-CoV-2 can infect and rep-
licate in gut bacteria, indicating that the virus could act in a sense as a bacteriophage [74]. This
could result in a particular and potent type of viral persistence, and may also partly explain the
gut dysbiosis seen in patients with Long COVID, because the bacteriophagic action of SARS-
Cov-2 can directly promote the replication of certain bacteria, causing an imbalance in the gut mi-
crobiota [74]. This may further contribute to the chronic inflammation, endothelial dysfunction,
and hypercoagulation seen in Long COVID.

Host factors
Chronic inflammation and immune dysregulation
In response to the virus in acute COVID-19, the immune system stimulates polyclonal T cell acti-
vation and the release of different inflammatory molecules, such as cytokines, interleukins, and
chemokines [75,76]. This event is known as a cytokine storm [75,77], and is a distinct immuno-
pathological feature of COVID-19. As the cytokine storm intensifies, high levels of inflammatory
molecules, such as serum amyloid A (SAA), von Willebrand factor (VWF), interleukin (IL)-6, IL-8,
IL-10, and tumor necrosis factor alpha (TNF-α) are increased drastically [75].

It has also been shown that severe COVID-19 causes B cell and T cell lymphocyte deficiency, oth-
erwise known as lymphopenia [78]. This can in turn cause hyperinflammation [78,79], because
lymphocytes participate in the resolution of inflammation after infection [80,81]. Depleted T cell
and B cell numbers are also strongly associated with persistent SARS-CoV-2 shedding, which
may further contribute to the chronic immune activation in Long COVID [82].

Autoimmunity
Bacterial and viral infections have been identified as a key environmental trigger in the pathophys-
iology of autoimmune diseases. Different mechanisms for the generation of autoimmunity follow-
ing infections have been proposed. These may include epitope spreading, bystander activation,
molecular mimicry, and activation of antigen-presenting cells [83]. For instance, T1DM has been
associated with coxsackievirus [84] and enteroviruses [85]. HCV has been postulated to be asso-
ciated with systemic lupus erythematosus [56,86], while molecular mimicry of Proteus spp. anti-
gens is closely involved in the pathology of rheumatoid arthritis [87,88].
Trends in Endocrinology & Metabolism, June 2023, Vol. 34, No. 6 327
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Evolving data suggest that autoimmunity contributes to the pathophysiology of SARS-CoV-2 in-
fection, both during the acute illness and in Long COVID. For instance, similar to pre-eclampsia
[89], antiphospholipid autoantibodies have been detected in 52% of serum samples of hospital-
ized patients; this directly correlates with neutrophil hyperactivity and more severe clinical out-
comes [90]. Numerous studies have also identified autoantibodies against interferons,
neutrophils, and cyclic citrullinated peptides [90–93].

Functional autoantibodies targeting G-protein-coupled receptors (GPCR-AAbs) have also been
demonstrated in the sera of patients with COVID-19; these are associated with disease severity
[94–96]. In a pilot study, the neutralization of GPCR-AAbs improved capillary impairment and fa-
tigue after COVID-19 infection [97].

Mast cell activation
The hyperinflammatory responses in acute COVID-19 infection and Long COVID have been hy-
pothesized to be facilitated, in part, by mast cell activation [98]. Mast cell activation can escalate
into mast cell activation syndrome (MCAS), which causes repeated severe allergic symptoms af-
fecting several body systems. Unregulated release of chemical mediators produces amultitude of
symptoms, including food allergies, urticaria, gastrointestinal upset, shortness of breath, and
wheezing, all of which are reported in Long COVID [99]. The proposed mechanisms whereby
MCAS is triggered in Long COVID include dysregulation of genes by SARS-CoV-2, resulting in
the loss of genetic regulation of mast cells, as well as development of autoantibodies which
react with immunoglobulin receptors on mast cells [100,101].

Melatonin deficiency
Melatonin is a sleep hormone with several attributes that help combat viral infection. It has been
shown that melatonin effectively subdues an overactive innate immune response, thereby down-
regulating inflammation [102,103]. It also endorses the adaptive immune reaction, resulting in en-
hanced antibody formation, thereby inhibiting the entrance of viruses into cells and limiting their
replication [102]. This has also been demonstrated in acute SARS-CoV-19 infection, where pa-
tients with higher levels of melatonin had lower mortality [102]. It could be argued that if a patient
has melatonin deficiency, they may be at increased risk of developing Long COVID. Based on the
results of previous studies of melatonin in other viral infections, as well as its role in a variety of
chronic inflammatory diseases [104], it could be used to help prevent and treat COVID-19 and
Long COVID [105].

Connective tissue abnormalities
As mentioned previously, various autoantibodies have been found in the systemic circulation of
patients with Long COVID. In fact, connective tissue disorders, such as arthritis, lupus, and myo-
sitis, have been reported after COVID-19 [106]. These may be precipitated by autoantibodies
attacking connective tissue and muscle [106]. In those with Ehlers–Danlos syndrome (EDS)
and hypermobility spectrum disorder (HSD), the high levels of inflammation present in Long
COVID may result in increased connective tissue laxity, which, if left unmitigated, could cause
visceroptosis [106]. This may manifest, for example, with an ME/CFS-like picture due to cranio-
cervical instability.

Downstream impacts
Tissue damage due to initial COVID-19 infection
Given that SARS-CoV-2 is airborne, it was anticipated at the beginning of the pandemic (and
found) that lung injury would be common in patients. However, an unforeseen complication of
the virus was the multiorgan impairment that it caused [107]. Structural brain and metabolic
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abnormalities were reported among survivors of COVID-19, which were directly associated with
ongoing neurological symptoms, such as memory loss, anosmia, and fatigue [107,108]. Cardiac
abnormalities and myocardial inflammation were observed in 78% of participants who
were discharged from hospital, indicating cardiac injury [109]. Other radiological abnormalities
were observed in the lungs, liver, pancreas, kidneys, and spleen persisting for a minimum of
2–3 months after hospital discharge [107,110–112].

While the initial acute infection can cause severe tissue and organ damage, this does not fully ex-
plain the diverse abnormalities seen in Long COVID. There is mounting evidence that the organ
involvement seen in COVID-19 occurs due to spread of the virus by the oro-systemic route
[113]. Virus contained in the mouth may spread to different organs through the blood. The distri-
bution of the illness in the organs lends weight to this argument. For example, abnormalities in the
lungs are predominantly seen in the peripheral and basal regions, reflecting the areas that are
most perfused but least aerated [113]. The most aerated areas (the apices) are spared, which
is against spread by inhalation from the upper airway. It is likely that, once the virus has found
its way into the organs, it stimulates microvascular in situ thrombosis, leading to the multiple clin-
ical features and radiological appearances of acute COVID [114]. Continuation of such a process
may contribute to ongoing organ involvement in Long COVID.

Tissue hypoxia
Autopsy results of lungs from individuals deceased from COVID-19 have shown significant pulmo-
nary vascular changes, extensive endothelial damage, and thrombosis [115]. The extent of pulmo-
nary vascular shunting in patients with COVID-19 is strongly correlated with poor oxygenation of
blood passing through the lungs [116]. The resultant systemic arterial hypoxemia can cause tissue
hypoxia throughout the body [117,118]. Under these hypoxic conditions, immune cells may be trig-
gered to produce inflammatory cytokines, which may further intensify capillary dysfunction. Not
only does hypoxia in the lung indirectly cause tissue hypoxia across the entire body, but SARS-
CoV-2 may also bind to ECs across various tissue types, altering cell morphology and inducing
ECs to undergo apoptosis. For instance, in the heart, endothelial dysfunction is associated with
EC swelling in small arterioles, capillaries, and venules, as well as scattered necrosis of individual
myocytes [119]. In the brain, infection of the microvascular endothelium in the subcortical white
matter is associated with microscopic ischemic and hemorrhagic lesions [120].

Due to the chronic inflammatory milieu in Long COVID, neutrophils may cause capillary obstruc-
tion, which can stall blood flow. This happens because neutrophils are larger than erythrocytes
and the average capillary diameter; thus, when excessively activated, they can obstruct capillary
flow [121]. It has been demonstrated that neutrophil adhesion in brain capillaries may impair brain
function and can produce a substantial decline in cerebral blood flow in animal models [122]. In
Long COVID, neutrophil degranulation is upregulated, suggesting continued inflammatory re-
sponses and immune dysregulation even after acute COVID [123]. Therefore, as seen in acute
COVID, the adhesion of hyperactivated neutrophils to capillaries within the lungs, brain, heart,
and other organs may contribute to the symptoms seen in Long COVID [124].

Patients with Long COVIDmay present with fibrin amyloid microclots that promote tissue hypoxia
and impaired oxygen exchange [1,8,12,125]. These microclots are resistant to fibrinolysis and
can block capillaries, thereby causing tissue hypoxia. If the oxygen supplied to aerobic tissue is
restricted, and then rapidly restored (‘reperfusion’), it may cause severe tissue damage. This is
known as ischemia–reperfusion injury [125]. This process involves the production of reactive
oxygen species (ROS), which increase oxidative stress [126,127]. Oxidative stress refers to an
imbalance between the rate of production of ROS and reactive nitrogen species and their
Trends in Endocrinology & Metabolism, June 2023, Vol. 34, No. 6 329

CellPress logo


Trends in Endocrinology &Metabolism
OPEN ACCESS
elimination via antioxidants [125]. Oxidative stress is known to promote the production of inflam-
matory cytokines, and vice versa, producing a vicious cycle [125,128,129]. If this persists and is
not treated appropriately, tissue hypoxia may linger for months and contribute to the multitude of
symptoms seen in Long COVID [1,8,12,125].

Since a previous review [125] covered this in some detail for both acute and Long COVID, we re-
view only briefly some of the evidence for tissue hypoxia, which includes low venous saturation
[130], heart rate variability, markers of oxidative stress continent on hypoxia, lactate accumulation
[131,132], biomarkers of ischemia–reperfusion injury, poor oxygen transfer [112], as well of the
benefits of therapies designed to alleviate tissue hypoxia [125]. Overall, we would regard the
breadth and extent of such evidence as both mechanistically integrated and compelling.

SARS-CoV-2 interactions with the host microbiome
Several studies suggest that COVID-19 promotes microbiome/virome dysbiosis that could result
in persistent symptoms. One study revealed that the microbiome in the bronchoalveolar fluid of
patients with COVID-19 showed increased pathogenic bacteria and higher levels of oral and
upper respiratory commensal bacteria compared with healthy controls [133]. Furthermore, the
gut microbiome of patients with COVID-19 is characterized by the augmentation of opportunistic
pathogens and the reduction of beneficial species [134].

Microbiome/virome dysbiosis can disturb the homeostasis and functioning of host signaling path-
ways in a way that may facilitate chronic disease development [135]. Dysbiosis is accompanied
by inflammation that can instigate dysfunction and breakdown of gut epithelial linings [136]. In
turn, this can cause increased epithelial permeability that allows pathogens to translocate into
the blood, where their presence can contribute to a range of systemic inflammatory processes.
This can result in endothelial damage and hypercoagulation [135].

Autonomic nervous system dysfunction
Symptoms consistent with dysautonomia are commonly reported by patients with Long COVID.
Although the rate of formal diagnosis of autonomic dysfunction varies widely [137–140], it is a sig-
nificant cause of symptom burden for patients with Long COVID and consensus guidelines for
management have been developed [37]. Patients with Long COVID display high rates of symp-
toms consistent with dysautonomia, such as orthostatic intolerance, fatigue, palpitations, cogni-
tive impairment, nausea, and temperature dysregulation [34,141]. Data on heart rate variability
(HRV), which is a measure of parasympathetic nervous system health, have demonstrated that
patients with Long COVID have a lower HRV compared with matched controls [142].

There are multiple potential causes for dysautonomia in Long COVID:

• Relative hypovolemia due to failure of peripheral vasoconstriction is a feature of both postural
orthostatic tachycardia syndrome (POTS) and orthostatic hypotension (OH) [143,144]; this
causes reduced stroke volume and cardiac output, resulting in impaired tissue oxygen supply.
This can result in a compensatory sympathetic overdrive and tachycardia.

• Cerebral hypoperfusion: a recent series of nine patients with Long COVID demonstrated that or-
thostatic intolerance, cerebral hypoperfusion (as measured by transcranial Doppler ultrasound)
and dysautonomia [as measured by the Quantitative Scale for Grading of Cardiovascular
Autonomic Reflex Tests and Small Fibers from Skin Biopsies (QASAT) score] were present in
all patients regardless of whether they met criteria for POTS or OH [145]. This is also consistent
with studies of impaired cerebral perfusion in ME/CFS [146–148]. Therefore, a reliance on
criteria for POTS and OH is likely to miss many cases of dysautonomia in Long COVID.
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• Small fiber neuropathy (SFN), defined as ‘preferential damage to unmyelinated or thinly myelin-
ated group C or A nerve fibers’ [149], has been documented in Long COVID and is a recognized
cause of dysautonomia in the condition [150–152]. We suggest that SFN in Long COVID
results from autoantibodies [153] (which have previously been associated with POTS and OH)
[154–158] or from ischemia of small fibers due to microclots.

• Damage due to direct infection or inflammation: SARS-CoV-2 is known to infect and produce its
RNA and spike proteins widely in both the peripheral and central nervous system [159]. Damage
associated with past infection, or persistent infection of the vagus or trigeminal nerves, may be a
driver of dysautonomia symptoms [160,161].

Figure 3 illustrates the complex interactions between the pathophysiology described in the previ-
ous sections and the symptoms that patients with Long COVID exhibit.

Interaction between systemic inflammation and coagulation
The processes of systemic inflammation and hypercoagulation are interdependent, as demon-
strated by the interactive crosstalk between these systems. Under normal physiological conditions,
these systems function as protective mechanisms and are closely regulated. Dysregulation may
occur within these systems as a result of chronic systemic inflammation and thrombotic complica-
tions. When a pathogen invades the host, or if tissue injury occurs, an inflammatory response is
elicited to eliminate the insult and promote healing and tissue repair. However, if the inflammatory
process is not properly resolved, acute inflammation may transition to a chronic state. The coagu-
lation cascade can be activated due to the consequent increase in proinflammatory cytokines.
TrendsTrends inin EndocrinologyEndocrinology & MetabolismMetabolism

Figure 3. Possible pathophysiological factors of Long COVID and resulting symptom manifestations. Figure created with BioRender (https://biorender.
com/).
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An important molecule in the context of inflammation-induced coagulation is tissue factor
(TF) [162]. The tenase complex, comprising TF and factor VIIa, activates the extrinsic coag-
ulation pathway, resulting in the generation of thrombin. Toward the end of the coagulation
cascade, thrombin catalyzes the conversion of soluble fibrinogen to insoluble fibrin. Proin-
flammatory cytokines can upregulate the expression of TF [163]. In addition, chronic sys-
temic inflammation promotes the suppression of certain anticoagulant mechanisms,
including the antithrombin and protein C pathways [164,165]. Likewise, fibrinolytic activity
may be suppressed due to a rise in PAI-1 levels [166–168] fueled by proinflammatory mole-
cules [165]. In summary, chronic systemic inflammation may alter the hemostatic balance to
a prothrombotic state [169].

Dysregulated coagulation may modify and prolong the inflammatory response. Coagulation pro-
teases may bind to protease-activated receptors on the activated endothelium and induce the
synthesis and expression of cell adhesion molecules [170,171]. These molecules have a critical
role in the extravasation of leukocytes to sites of inflammation. Moreover, activated coagulation
factors can also provoke an inflammatory response by interacting with immune cells to induce
the production of inflammatory cytokines [172,173].

Platelets also have a role in regulating and facilitating inflammation. Inflammatory molecules
can bind to specific receptors on platelets and activate them to release their granular content,
which comprises procoagulant and proinflammatory molecules. Platelets are also implicated
in the recruitment of leukocytes and the regulation of vascular permeability [174].

Abnormalities of coagulation in Long COVID
Fibrinaloid microclots
The processes of normal blood clotting are well established. The terminal steps involve the self-
assembly of fibrinogen molecules that have been cleaved by thrombin into long fibers
[175,176]. It has been established that blood sometimes clots into anomalous forms, previ-
ously referred to as ‘dense matted deposits’; these anomalous microclots are resistant to fibri-
nolysis (proteolysis) [177]. It was subsequently recognized that this anomalous form was in fact
amyloid in character [178]. These fibrinaloid microclots or fibrin(ogen) aggregates have also
been reported in the plasma of patients with T2DM [179], ME/CFS [180], acute COVID-19
[1,181,182], and Long COVID [1,8,10–12]. These microclots, along with hyperactivated plate-
lets, are likely to be contributing to the thrombotic and systemic inflammatory manifestations of
these diseases.

It has also been demonstrated that the isolated SARS-CoV-2 spike protein S1 subunit is a
proinflammatory inflammagen [10]. SARS-CoV-2 can directly interact with platelets and
fibrin(ogen) to induce changes in fibrin(ogen) and hypercoagulability [10]. This suggests
that spike protein has direct pathological effects without being taken up by cells [10].
Figure 4 shows representative micrographs of purified fluorescent fibrinogen with added
thrombin after exposure to spike protein. Here, we can see dense fibrin clots forming
(green, fluorescent signal) in the presence of spike protein. In platelet-poor plasma (PPP)
with and without thrombin, the green fluorescent Thioflavin T (ThT) signal indicates areas of
amyloid deposit formation. Microfluidics demonstrate that spike protein can generate a disor-
derly clotted mass when added to PPP (Figure 5) [10]. The microclots cover most of the
channel and often protrude into the center of the flow channel, thereby disrupting flow [10].
Aside from the fact that the SARS-CoV-2 S1 spike protein can directly induce the formation
of fibrinaloid microclots in healthy PPP samples, these microclots have also been observed in
patients with acute COVID-19 or Long COVID. The microclots are very resistant to digestion
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Figure 4. Representative fluorescence micrographs of platelet-poor plasma (PPP) from healthy individuals
after addition of Thioflavin T (green fluorescent signal). (A) PPP smear. (B) PPP with spike protein. (C) PPP with
thrombin to create extensive fibrin clot. (D) PPP exposed to spike protein followed by addition of thrombin. Reproduced
from [10].
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protocols [177,178]. Amyloid protein structures are known to be naturally recalcitrant to pro-
teolysis [178]. However, by way of contrast, microclots in T2DM (and the few that may be
present in plasma samples of healthy participants), degrade with standard protein digestion
protocols [1].

Numerous inflammatory molecules trapped inside Long COVID microclots have been identified
by proteomics. These include alpha 2-antiplasmin (α2AP), VWF, platelet factor 4 (PF4), serum
amyloid A (SAA), various fibrinogen chains, as well as numerous antibodies [1,8,12].

If the coagulopathy during the acute phase of the disease is not adequately treated, the resulting
impaired oxygen exchange and tissue hypoxia may linger for months [116]. This may explain the
multiorgan manifestations of Long COVID. [1,8,12]. Figure 6 illustrates the presence of fibrinaloid
microclots and hyperactivated platelets in patients with Long COVID.
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Figure 5. Representative
micrographs of platelet-poor
plasma (PPP) microclots in
microfluidic chambers coated
with thrombin. (A) Healthy PPP
clot, with small clot formation
(arrow), with (B) no clot formed in
the healthy PPP sample. (C,D)
Examples of clots from Coronavirus
2019 (COVID-19) PPP samples and
(E,F) healthy PPP clot with spike
protein. Reproduced from [10].
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Dysregulated coagulation due to endothelial damage and dysfunction
Recent research has shown that endothelial inflammation, otherwise known as endothelialitis, in
COVID-19 may have long-term consequences for vascular function [18]. Endothelial damage
and dysfunction are observed in Long COVID and have been shown to be strong correlates of
the disease [183]. Certain EC biomarkers, such as VWF and Factor VIII, are significantly elevated
in patients recovering from COVID-19. Eight months after mild-to-moderate COVID-19 infection,
other endothelial markers, such as ET-1 and angiopoietin-2, were dysregulated in patients with
Long COVID [18].

In acute COVID-19, it has already been established that endothelial dysfunction and impairment
of the microcirculation are present [184,185]. SARS-CoV-2 directly impairs vascular homeostasis
by infecting ECs via the ACE-2 receptor [185]. The Ang II hyper-reactivity that this provokes leads
to a flare of inflammation and progression of fibrosis [186]. Upregulated inflammatory mediators
within the endothelial matrix also indirectly contribute to endothelialitis and EC injury [187].

ECs have also been found to undergo apoptosis several months after initial COVID-19 infection
[102]. This directly impairs signaling between intercellular connexin channels and upstream vas-
cular smooth muscle cells. In addition, the capillary endothelium is protected by a glycocalyx ma-
trix that acts as a fluid barrier; elevated inflammatory mediators in Long COVID may cause
shedding of this glycocalyx, causing profound changes in microvascular resistance and capillary
hemodynamics [102].

The vascular endothelium serves as a central interface between inflammation and coagulation,
with a crucial role in the regulation of two systems. Under normal physiological conditions, the
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Figure 6. Representative
micrographs of samples from
patients with Long COVID
showing (A–F) hyperactivated
platelets [8] and (G) large
fibrinaloid microclots [1]. Platelets
are fundamental to blood clotting and
directly interact with red blood cells
and the vascular endothelium. When
platelets are hyperactivated, as
displayed by the arrows, this promotes
blood clotting and the attachment of
microclots to the endothelium. The
fluorescent marker, Thioflavin T, binds
to misfolded protein and causes the
microclots to fluoresce green. These
large microclots (>10 μm) may cause
severe pathology and block capillaries.
Reproduced from [1,8].
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intact endothelium has anti-inflammatory properties and expresses anticoagulant proteins
[188,189]. However, in Long COVID, it is hypothesized that cryptic SARS-Cov-2 reservoirs and
various inflammatory molecules bind to receptors on ECs [190]. This may cause the endothelium
to become activated and to upregulate the expression of cell adhesionmolecules, such as ICAM-1,
VCAM-1, selectins (E-selectin and P-selectin), inflammatory mediators, and procoagulant factors,
while weakening the expression of anticoagulant factors [10]. Cytokines can also directly stimulate
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TF and the formation of neutrophil extracellular traps (NETs) to induce thrombosis [191,192].
Additionally, the inflamed endothelium promotes adhesion and hyperactivation of platelets [193].
SARS-Cov-2 can also directly bind to platelets via the ACE2 and TMPRSS2 receptors to promote
platelet activation, adhesion, and aggregation, thereby causing increased coagulation [194].
Moreover, platelets can also become hyperactivated due to upregulation of inflammatory and
adhesion molecules.

Autopsy studies have revealed the extensive effects of SARS-CoV-2 infection on ECs., including
endothelialitis, endothelial damage, capillary inflammation, and thrombosis [183]. Endothelial
damage may increase cell permeability and leukocyte adhesion while inhibiting anticoagulant
properties. Previous studies showed that antithrombin III, tissue factor pathway inhibitor, and ac-
tivated protein C (APC) are significantly decreased in the context of endothelial damage, promot-
ing coagulation [195,196]. Furthermore, damaged ECs become procoagulant when exposed to
TF, exposed phosphatidylserine (PS), increased VWF, and factor VIII. ECs can also fuel the ex-
pression of chemokines on their surface, promoting neutrophil recruitment that may contribute
to thrombosis [197].

Dysregulated coagulation due to viral persistence
As previously mentioned, SARS-CoV-2 may hide in EVs to reattack various tissues through the
circulatory system. Apart from their important function as transporters, EVs also have a vital
part in inflammation, coagulation, and immune regulation. It has been demonstrated that extra-
cellular vesicle-TF (EV-TF) activity is significantly upregulated in patients hospitalized with
COVID-19. Furthermore, TF-positive EVs are released into the circulation, which may lead to
thrombosis [198]. In addition, previous studies have demonstrated that PS exposure in the
outer membrane of the cell membrane due to viral infection may also promote activation of coag-
ulation [199]. PS is a membranous phospholipid normally found in the inner membrane of a dou-
ble cell membrane. When vascular ECs and circulating blood cells are damaged, the lipid
distribution is altered in the membrane and PS moves from the inner to the outer membrane.
When PS is exposed in the outer cell membrane, it creates a catalytic surface for clotting factors,
which facilitate the conversion of prothrombin to thrombin [200]. In addition, PS externalization in
patients with COVID-19 is strongly associated with increased D-dimer levels and patients with
thrombosis have significantly higher PS externalization compared with patients without thrombo-
sis [201]. This further implies that EVs may carry SARS-CoV-2 to distant tissues, reinjuring the
vascular endothelium. Figure 7 illustrates how EVs may promote endothelial damage and platelet
hyperactivation and subsequently cause abnormal coagulation.

Dysregulated coagulation due to autoimmunity
Autoantibodies that promote thrombosis have recently been recognized as an important factor in
Long COVID [202]. Antiphospholipid (APL) antibodies, in particular, promote thrombosis by stim-
ulating neutrophils to release NETs and by activating ECs and platelets [73,202]. It was previously
also shown that APL antibodies can directly cause endothelial damage by binding to receptors on
ECs [203]. When APL antibodies bind to these receptors on the endothelial wall, they inhibit nitric
oxide synthase (NOS) production, thereby decreasing the production of NO [204]. NO is known
for its anti-inflammatory and vasodilatory properties. The reduction in NO production may con-
tribute to endothelial damage. Endothelial injury promotes the release of inflammatory cytokines
and recruitment of neutrophils via increased neutrophil adhesion in the setting of decreased
NO and complement activation. This ultimately leads to impaired vascular integrity and increased
platelet aggregation, causing hypercoagulation [205]. Therefore, it is not surprising that markers
of endothelial activation/damage, such as VWF, have been shown to correlate with disease se-
verity in Long COVID [206].
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Figure 7. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may bind to endothelial cells and platelets via the angiotensin converting
enzyme 2 (ACE2)/transmembrane protease serine 2 (TMPRSS2) receptors to promote endothelial dysfunction and platelet hyperactivation, thereby
promoting the activation of the coagulation cascade and formation of fibrinaloid microclots. In Long COVID, SARS-CoV-2 may hide in extracellular vesicles
(EVs) and reattack various tissues and organs through the circulatory system. When SARS-Cov-2 binds to endothelial cells and platelets via the ACE2/TMPRSS2
receptors, it causes endothelial dysfunction and platelet hyperactivation. This may lead to phosphatidylserine (PS) exposure in the outer cell membrane. PS exposure
can directly promote certain factors within the coagulation cascade, such as tissue factor (TF). TF is also a complex with FVIIa, and provides binding sites for
procoagulant complexes, leading to the formation of thrombin. Thrombin is the final step in the coagulation cascade, which promotes conversion of fibrin to fibrinogen,
causing blood coagulation. Furthermore, endothelial damage and PS exposure also causes endothelial cells and platelets to further produce various cytokines,
resulting in chronic systemic inflammation. Cytokines can also directly stimulate TF within the coagulation cascade as well as the formation of neutrophil extracellular
traps (NETs) to induce thrombosis. SARS-CoV-2 persistence promoting chronic inflammation in Long COVID may be a mechanism that stimulates endothelial cells,
platelets, and other inflammatory cells. This promotes the upregulation of procoagulant factors within the coagulation cascade and, ultimately, the formation of
fibrinaloid microclots that are resistant to fibrinolysis. Figure created with BioRender (https://biorender.com/).
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Dysregulated coagulation due to chronic hypoxia and persistent inflammation
Hypoxia is a condition in which sufficient oxygen is not available to tissues to support satisfactory
homeostasis [207]. This can result from insufficient oxygen delivery to the tissues and organs (due
to low blood supply or low oxygen content within the blood), and increased tissue oxygen
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demand. The response and tolerance to hypoxia is variable; while some tissues/organs can
tolerate some forms of hypoxia for a longer period, other tissues may be seriously damaged.

Chronic hypoxia within tissue may also promote hypercoagulation. It may trigger transcription fac-
tor early growth response-1, upregulate TF expression, and promote the expression of PAI-1,
thereby increasing coagulation [208]. Chronic hypoxia can also promote apoptosis of ECs. This
reduces endothelial anticoagulant properties, vascular permeability, leukocyte adhesion, and
microparticle production [208].

Chronic inflammation in Long COVID can also stimulate ECs, platelets, and inflammatory cells
to produce inflammatory cytokines and procoagulant factors [8]. This chain of events can
damage the protective function of the vascular endothelium, consequently causing abnormal
coagulation [208].

Priorities
In this review, we have described the multiple pathophysiological factors at play in Long COVID
and their interactions with the coagulation system and endothelium. It is now clear that wide-
spread endothelial inflammation is a key feature of COVID-19 disease. In fact, we would argue
that, while there may be many mechanisms at play in the pathogenesis of Long COVID, a dom-
inant pathological process driving symptom burden is a thrombotic endothelialitis. This induces a
systemic prothrombotic state with the formation of anomalous circulating fibrinaloid microclots
and hyperactivated platelets, driven by elevated levels of procoagulant inflammatory molecules,
which interact with each other as well as with platelets and the endothelium.

Several studies have demonstrated a significant increase in the incidence of thromboembolic
phenomena after COVID-19 infection [209–211]. A study of the electronic health records of 48
million adults across England and Wales revealed that, in the week following acute COVID-19,
the adjusted hazard ratios for first arterial thrombosis and first venous thrombosis were 28.7
and 33.2 times, respectively that of those with no COVID-19 diagnosis. While the risk diminished
over time, it remained elevated up to 49 weeks after diagnosis [211]. An analysis of 11.7 million
US Veterans’ health records, including over 153 000who had acute COVID-19 infection, revealed
a significantly increased risk of adverse cardiovascular outcomes, including thrombosis-related
diseases, such as myocardial infarction, acute coronary syndrome, pulmonary embolism, and
stroke at 1 year [212]. The hazard ratio remained elevated in ‘mild’ cases and in younger patients
with no underlying health issues.

Despite the extensive body of research into the condition, there are currently no validated
evidence-based treatments for Long COVID. There clearly needs to be further research into the
pathophysiological mechanisms; however, given the scale and debilitating nature of the condi-
tion, this should not delay good-quality trials of candidate treatments. High caliber research can
(and should) be accelerated; this was demonstrated during the first year of the pandemic with tri-
als, such as RECOVERY, which identified effective treatments for acute COVID-19 [213]. A recent
comprehensive review of Long COVID identified several research priorities, including the need to
build on existing knowledge from similar conditions, such as ME/CFS; recognition of the limita-
tions of laboratory testing for COVID-19 with a move to clinically defined inclusion and exclusion
criteria for studies; appropriate representation of disadvantaged groups; and patient engagement
at all stages of research, beginning with study design [13].

There needs to be a multipronged treatment agenda for Long COVID treatment trials, incorporat-
ing drugs targeting all potential mechanisms, including viral persistence, autoimmunity, immune
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Outstanding questions
How can we accelerate clinically
defined inclusion and exclusion criteria
for Long COVID studies?

How can we ensure appropriate
representation of disadvantaged groups
with Long COVID, and patient engage-
ment at all stages of research, beginning
with study design?

How can we accelerate diagnosis and
clinical trials to test treatment
regimens? Despite the extensive body
of research into the condition, there
are currently no validated evidence-
based treatments for Long COVID.

How can we build on existing
knowledge from similar conditions,
such as ME/CFS?
dysregulation, and gut dysbiosis. However, given the pathophysiology of the disease and the
clearly increased risk of thrombotic events, attention needs to be paid to the endothelialitis and
coagulation abnormalities as a priority. There are promising pilot data for improvement in symp-
toms and endothelial function with the drug sulodexide [214]. Initial observational experience with
triple anticoagulant therapy to address the anomalous clotting is also encouraging [8]. A pilot
study of the drug Pycnogenol® demonstrated improvements in endothelial function, microcircu-
lation, inflammatory molecules, oxidative stress, and symptoms [215]. For any of these drugs to
be adopted widely, these results need to be replicated further in randomized controlled trials. Fi-
nally, heparin-induced extracorporeal lipoprotein (HELP) apheresis has been proven to reduce
hypercoagulability and inflammatory molecules in cardiovascular disease; while there is potential
for its use in Long COVID [216], the treatment is expensive and not widely accessible, and so far
there are no objective data of its efficacy in Long COVID.

In parallel with treatment trials, it is necessary to develop validated, accessible methods for de-
tecting and tracking endothelialitis, microclots, and platelet hyperactivation to aid diagnostics
and monitor response to treatment (see Outstanding questions). The currently available tech-
niques are expensive and not readily available in clinical settings [1,183,217].

The ongoing search for definitive treatment options does not mean that nothing can be done
to help patients in the meantime. There is plenty that clinicians can offer. In the first instance,
care must be taken to ‘do no harm’ by determining whether the patient has the ‘syndromic’ or
‘non-syndromic’ subtype of Long COVID, so that individuals with the former are not offered treat-
ments, such as graded exercise therapy (GET) or cognitive behavioral therapy (CBT). These treat-
ments have been shown to be harmful and/or ineffective and several guidelines explicitly advise
against them [36,218]. Once the patient has been subtyped, symptomatic treatment should be
offered depending on the presentation [13], such as antihistamines for MCAS [219], and cardiac
rate-limiting medication for dysautonomia [37,220]. The response to therapy should be reviewed
on a regular basis, with treatments titrated/stopped/substituted as appropriate.

Concluding remarks
Long COVID is a multisystem disease with debilitating symptoms, which has had a profound im-
pact on society and the global economy. There are several potential pathophysiological mecha-
nisms, some of whichmay be causative and others likely to be epiphenomena. These include viral
factors, host factors, and downstream impacts. Thesemechanisms interact with the vascular en-
dothelium to induce a persistent thrombotic endothelialitis with systemic hypercoagulability. This
may promote the formation of fibrinaloid microclots, platelet hyperactivation, and endothelial dys-
function, which can lead to various clotting pathologies. Currently, there are no definitive treat-
ments for the condition. There is a pressing need for randomized placebo-controlled trials of
therapeutics targeting the dysregulated coagulation and endothelialitis, especially given the in-
creased long-term risk of thromboembolic outcomes (see Outstanding questions).
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