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Summary
Background Throughout the COVID-19 pandemic, the SARS-CoV-2 virus has continued to evolve, with new variants
outcompeting existing variants and often leading to different dynamics of disease spread.

Methods In this paper, we performed a retrospective analysis using longitudinal sequencing data to characterize
differences in the speed, calendar timing, and magnitude of 16 SARS-CoV-2 variant waves/transitions for 230
countries and sub-country regions, between October 2020 and January 2023. We then clustered geographic
locations in terms of their variant behavior across several Omicron variants, allowing us to identify groups of
locations exhibiting similar variant transitions. Finally, we explored relationships between heterogeneity in these
variant waves and time-varying factors, including vaccination status of the population, governmental policy, and
the number of variants in simultaneous competition.

Findings This work demonstrates associations between the behavior of an emerging variant and the number of co-
circulating variants as well as the demographic context of the population. We also observed an association
between high vaccination rates and variant transition dynamics prior to the Mu and Delta variant transitions.

Interpretation These results suggest the behavior of an emergent variant may be sensitive to the immunologic and
demographic context of its location. Additionally, this work represents the most comprehensive characterization of
variant transitions globally to date.
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Introduction
Since the first SARS-CoV-2 viral sequence became avail-
able in January of 2020,1 there have been over 660million
confirmed cases of COVID-19 globally,2 leading to over
6.7 million deaths. SARS-CoV-2 is continuously evolving,
and global transitions to newly emergent variants can
generate waves of disease spread. The selective advantage
of a new variant over existing variants is often associated
with increased infectivity (e.g., through enhanced
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receptor binding or spike processing) and/or increased
resistance to neutralizing antibodies induced by vacci-
nation, prior infection, or both.3–10 Prior infections with
different variants can be associated with differing pro-
tection against newly emergent variants,11 and we hy-
pothesize that vaccination rates and the history of prior
infecting variants may impact the rate at which an emerging
variant out-competes existing variants to become the
dominant form of the virus in a given country or state.
1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lvandervort@lanl.gov
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2023.104534&domain=pdf
https://doi.org/10.1016/j.ebiom.2023.104534
https://doi.org/10.1016/j.ebiom.2023.104534
https://doi.org/10.1016/j.ebiom.2023.104534
www.thelancet.com/digital-health


Research in context

Evidence before this study
SARS-CoV-2 variants with a selective advantage are
continuing to emerge, resulting in variant transitions that can
give rise to new waves in global COVID-19 cases and changing
dynamics of disease spread. While variant transitions have
been well studied individually, more work is needed to better
understand how variant transitions have occurred in the past
and how properties of these transitions may relate to
vaccination rates, convalescent immunity, and population
demographics.

Added value of this study
Our retrospective study integrates metadata based on 14
million SARS-CoV-2 sequences available through the Global
Initiative on Sharing All Influenza Data (GISAID) with clinical

and demographic data to characterize heterogeneity in
variant waves/transitions across the globe throughout the
COVID-19 pandemic. We demonstrate that properties of
the variant transitions (e.g., speed, timing, and magnitude of
the transition) are associated with vaccination rates, prior
COVID-19 cases, and the number of co-circulating variants in
competition.

Implications of all the available evidence
Our results indicate that there is substantial heterogeneity in
how an emerging variant may compete with other virus
variants across locations and suggest that each location’s
contemporaneous immunologic landscape may play a role in
these interactions.
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To explore this hypothesis and characterize hetero-
geneity in the speed, timing, and magnitude of variant
transitions globally, we performed a retrospective anal-
ysis of over 14 million SARS-CoV-2 sequences reported
to the Global Initiative on Sharing All Influenza Data
(GISAID) between October 2020 and mid-January
2023.12 We used multinomial regression spline
modeling to estimate and summarize variant transition
dynamics across 230 countries and sub-country regions
and 16 SARS-CoV-2 variant waves, including recently
emergent Omicron sublineages BA.2.75, XBB.1/XBB,
and BQ.1.10 Our results illustrate large heterogeneity in
variant transitions between locations. For Omicron, we
clustered geographic locations in terms of their variant
behavior, allowing us to identify groups of locations with
similar transition dynamics. We then leveraged clinical
and demographic data to explore how properties of
variant waves relate to time-varying factors, including
vaccination status of the population, governmental pol-
icy, and the number of variants in competition. This
work demonstrates an association between the behavior
of an emerging variant and the immunologic and de-
mographic context of the population. Additionally, this
work represents the most comprehensive characteriza-
tion of SARS-CoV-2 variant transitions globally to date.
Methods
Data sourcing and processing
Analyzed data streams (summarized in Supp. Fig. A.1)
are described below. All data were aggregated by date
and location. We defined spatial locations at the country
level and, for select countries having sufficient data, the
sub-country region level.

GISAID SARS-CoV-2 data
Data for over 14 million SARS-CoV-2 sequences re-
ported to GISAID by 1/17/2023 (https://gisaid.org) were
obtained through the COVID-19 Viral Genome Analysis
Pipeline https://cov.lanl.gov. We resolved location name
inconsistencies and removed sequences with evident
entry errors. We then categorized the sequences by
variant (e.g., Alpha, Delta) based on each sequence’s
Pango nomenclature SARS-CoV-2 lineage designation,13

after excluding records designated “None” or “Unas-
signed”. Pango sub-lineage groupings as of 1/17/2023
are provided in Supp. Table A.2. Fig. 1 illustrates the
reported variant proportions over time globally and for
four example countries.

Clinical and demographic data
Daily confirmed COVID-19 case and death data were
obtained from the Johns Hopkins Center for Systems
Science and Engineering (CSSEGIS), along with daily
Oxford COVID-19 Government Response indicator
(0 = none, 100 = strict) and WorldPop age, population
density, and population information for each loca-
tion.2,14,15 Daily model-predicted mask usage (%) based
on survey data was obtained from the Institute for
Health Metrics and Evaluation (IHME) at the Uni-
versity of Washington.16 Population percent with less
than secondary education and the average disposable
income (in dollars) were obtained from the Organi-
zation for Economic Cooperation and Development
(OECD).17 When missing, region-level OECD data
were assigned the reported country-level value.
Additional information is provided in Supp.
Table A.1.

Statistics
Characterizing speed, timing, and magnitude of SARS-CoV-2
variant transitions across locations and variant categories
The variant landscape in a given population is dynamic,
with the number of competing variants changing
through time (Fig. 1). We propose a model for the
variant proportions over time for each location that
www.thelancet.com Vol 91 May, 2023
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Fig. 1: Daily variant composition of all SARS-CoV-2 sequences reported to GISAID (a) globally and (b) for four example countries (points) along
with fitted variant proportions (lines) from the primary analysis. Fitted lines show the point estimates obtained from fitting the multinomial
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directly accounts for multiple competing variants.
Several similar (but often less flexible) models of SARS-
CoV-2 variant transitions have been proposed
elsewhere.18–23 Depending on data availability, our pri-
mary analysis considered up to 16 variant Pango lineage
categories for each location, including Alpha, Beta, Iota,
Gamma, Mu, Epsilon, Delta, Omicron BA.1 (excluding
BA.1.1), Omicron BA.1.1, Omicron BA.2 (excluding
BA.2.12.1 and BA.2.75), Omicron BA.2.12.1, Omicron
BA.4, Omicron BA.5, Omicron BA.2.75, Omicron XBB,
and Omicron BQ.1, as well as “others”. See Supp.
Fig. A.2 for details.

Let yij(t) be the observed number of sequences for
location i and day t attributed to variant/sub-variant j,
and let yi0(t) represent the number of sequences in the
“other” category. For each day, we defined the true
proportion of sequences attributed to variant j as pij(t),
with pi0(t) representing “other.” We assumed an inde-
pendent multinomial distribution for variant composi-
tion of sequencing, with proportions modeled as:

log[pij(t)
pi0(t)] = hij(t) for all j = 0,…, J such that

P(variant = j
⃒⃒
location = i, day = t) = ehij(t)

1+∑J

k=1e
hik(t)

,

(Eq. 1)

defining hi0(t) = 0. For each location, the number of
categories J differs based on the number of included
variants. This multinomial logistic regression model is
similar to one in Figgins and Bedford,22 who noted
convenient parameter interpretations but poor data fits
when hij(t) is linear in t. We posited a more flexible
natural cubic spline model for each hij(t), with a knot at
the median of t. Multiple knots and additional linear
terms did not further improve the results (Supp.
Fig. F.1). Resulting single-knot fitted variant pro-
portions are illustrated in Fig. 1.

Noting that
d̂pij(t)
dt = p̂ij(t)[dĥij(t)dt − ∑J

k=1{p̂ik(t) dĥik(t)dt }],
we summarized fitted p̂ij(t) using the following metrics:

kij =max
t
(dp̂ij(t)

dt
), tij = argmax

t
(dp̂ij(t)

dt
) − t0ij,

and uij =max
t
(p̂ij(t)),

(Eq. 2)

where kij represents the maximum slope of the variant
transition curve (i.e., transition speed), t is the relative
ij

model in (Eq. 1). The size of the plotted points corresponds to the total
each country. For panel (a), global sequences attributed to each variant
reported for each sequence’s corresponding country on that date.
timing in days at which the maximum slope is achieved
(i.e., transition timing), and uij is the maximum fitted
variant prevalence (i.e, transition peak prevalence). The
earliest transition time is set to zero for each variant j,

with t0ij = min(argmaxt(d̂pij(t)dt )). Higher kij and smaller

tij corresponds to steeper and earlier variant transitions,
respectively.

Supp. Fig. A.2 provides our criteria for determining
which location and variant combinations were modeled.
After fitting (Eq. 1), we excluded some locations based
on visual evaluation of the fits. Out of 591 country/re-
gions considered, 230 locations (and a total of 2017
variant transitions) were included in the primary anal-
ysis (Supp. Fig. A.4).

Clustering locations in terms of similarity in SARS-CoV-2
variant transition profiles
To characterize location similarities across Omicron
transitions (excluding BA.2.75, XBB, and BQ.1), we
performed a hierarchical clustering analysis. Since the
included sub-variants differed by location, we again
summarized (Eq. 2) metrics by fitting the following
regression model:

g(E(metric)) = α+∑5
j=1

βjI(Omicron subvariant j)

+ ∑I−1
i=1

γiI(location= i),
(Eq. 3)

where I denotes the indicator function. Estimated
γi’s capture the average difference between each
location and the reference location (USA, due to
large sample size) in terms of the summary metric
across Omicron transitions. We chose Gaussian
(log10(k)), Poisson (t), and Beta (u) regressions using
identity, log, and logit link functions g, respectively.
Clustering was performed only for 163 locations with
at least 4 included Omicron sub-variants.

We then performed a Wald agglomerative hierar-
chical clustering on γ estimates from (Eq. 3) using
the R package cluster.24 In defining the number of
clusters, we compared cluster size, within cluster
sum of squares, intra-cluster variance, and how
South Africa was clustered (since its transition dy-
namics were distinctive). Supp. Fig. B.1 illustrates
the resulting 7 clusters in terms of their (Eq. 3)
coefficients.
number of sequenced samples, relative to the daily maximum within
for a given date were weighted proportional to the confirmed cases
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Exploring relationships between variant transition metrics
and contemporaneous disease landscape
We obtained location attributes at the time each p̂ij(t)
first reached 5%. We chose 5% to focus on the
critical time when the new variant is gaining a
foothold locally but clinical surveillance would likely
not have been appreciably impacted. Characteristics
of interest included demographics (e.g., population
density), COVID clinical landscape (e.g., case burden
and vaccination rates), and current COVID-related
public policy (e.g., Governmental response indica-
tor). We also identified two proxies for existing
variant competition at the time of the new variant
emergence in each location: 1) the number of co-
circulating SARS-CoV-2 variants/sub-variants with at
least 5% prevalence and 2) the competition ratio,
defined as the maximum percent increase in existing
variants’ prevalences between p̂ij(t) = 0.02 and 0.05.25

Additionally, we included the timing and height of
the most recent prior COVID-19 case wave peak
(Supp. Section A).

For each variant, we calculated the Spearman
correlation between the (Eq. 2) metrics and location
characteristics along with cross-correlations of tran-
sition summary metrics across variant waves. For
evaluating correlations between categorical and
continuous variables, we calculate Kendall’s rank
correlation τb. For each summary metric, we then
performed random forest modeling to study the
adjusted location-transition associations. We used the
R package randomForest,26 with missing predictor
data handled using proximity-based imputation. Out-
of-bag importance metrics were calculated based on
10,000 regression trees. We also fit regression
models for each of log10(k), t, and u, using Gaussian,
Quasi-Poisson, and Beta regression, respectively.
Prior to regression modeling, missing data were
handled by multiple imputation using the R package
mice.27 Details are provided in Supp. Section A. All
models were also adjusted for variant/sub-variant.
Supp. Figs. A.3 and D.1 describe the data missing-
ness (ranging from 5% for population density to 65%
for the government response indicator) and model
goodness of fit. Modeling results based only on
locations with complete data are provided in Supp.
Fig. D.2.

Ethics
This study falls under the National Institutes of Health
Human Subjects Research exception 4, since this
study involves the collection/study of publicly-available
data.

Role of funders
The funders had no role in data collection, analysis,
interpretation of the results, or decision to publish.
www.thelancet.com Vol 91 May, 2023
Results
Characterizing speed, timing, and magnitude of
SARS-CoV-2 variant transition profiles across
locations and Pango lineage groups
Fig. 2 summarizes the fitted variant transitions from the
primary analysis. Supp. Figs. C.1–C.3 map estimates for
several variants of interest. The Beta, Gamma, Mu,
Epsilon, Iota, and Omicron BA.2.75 variants were
associated with lower variant prevalence (u) and transi-
tion speeds (k), except for the Gamma transition in
South America, the Beta transition in Southern Africa,
and the Omicron BA.2.75 transition in India. Delta and
Omicron BA.1, BA.1.1, BA.2, BA.5, and BQ.1 variants
tended to have fast (high k) transitions, although there
was substantial variability in terms of speed and preva-
lence attained by Omicron BA.1, BA.1.1, and BQ.1
globally. For example, the Omicron BA.1.1 variant ach-
ieved a strong presence in the Americas, reaching a
prevalence of about 75% in the USA, where it had a
relatively early start (Fig. 1b). Alpha had a slow and
small transition in South America, likely due to
competition with Gamma and Mu, and in South Africa,
where it was competing with Beta. In contrast, the
transition speed and maximum prevalence had little
heterogeneity for the Delta, exhibiting a rapid and total
transition in most locations. Omicron BA.4 and BA.5
were first observed in South Africa and spread globally
at roughly the same time (Fig. 2); however these line-
ages had profoundly different trajectories in terms of
their maximum transition slopes, maximum prevalence,
and their relative time to transition, suggesting selective
advantage of BA.5 over BA.4 (Fig. 2). Of note, the
founder forms and early expansions of BA.4 and BA.5
carried identical Spike sequences,28 implicating changes
outside of the spike protein in the observed differences.

The date of “first” appearance (i.e., the first day with
at least two sequences) provides insight into the relative
timing of each variant’s global spread. Some variants
(e.g., Beta, Epsilon, and Omicron XBB and BA.2.75)
were first sequenced in the originating country long
before they were more commonly sequenced globally.
In contrast, most Omicron sub-variants were observed
globally very quickly after their discovery.

The relative timing of the maximum transition slope,
t, is defined in terms of days since the earliest global
transition for each variant. This metric is distinct from
the first variant appearance, since a variant can circulate
at low levels for a long time before gaining a foothold in
a given location. Therefore, t provides a better metric for
the variant transition timing. The Beta, Delta, and Om-
icron BA.2.75 waves hit much earlier in their originating
countries (South Africa and India) than they did glob-
ally, with some countries’ Delta variant transition
occurring over 6 months later. In contrast, the Omicron
BA.1, BA.1.1, BA.2.12.1, BA.5, and BQ.1 waves occurred
more quickly and with much less variability globally.
5
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Fig. 2: Boxplots of (a) highest variant transition speeds, k, (b) highest variant prevalences, u, (c) relative timings, t, and (d) date of first variant
appearance across 230 locations, with text annotations indicating the countries having the highest and/or lowest value. Large circles correspond
to global estimates based on analyzing all locations together, weighting each sequence proportional to the confirmed cases reported for that
sequence’s corresponding country on that date. For emerging variants Omicron BA.2.75, XBB.1/XBB, and BQ.1, medium- and small-sized circles
provide estimates for locations that have and have not reached their maximum fitted slope by 1/17/2023, respectively. For transitions that
haven’t yet reached their maximum slope, maximum slope estimates are expected to increase as more data become available. Maximum variant
prevalences are also likely to increase as more data are collected. Small global estimates of k for Epsilon (0.11) and Iota (0.09) variants are not
shown. These results demonstrate substantial heterogeneity in variant transition dynamics between locations. Rectangles represent the 25th–
75th quantiles of the plotted variable, and outliers are defined as values exceeding 1.5 times the inter-quartile range beyond the rectangle in
either direction.
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Low transition timings for Mu, Epsilon, and Iota are due
to limited localized spread.

Clustering locations in terms of similarity in SARS-
CoV-2 variant transition profiles
To evaluate whether groups of geographic locations
tended to have shared patterns across Omicron transi-
tions (excluding BA.2.75, XBB, and BQ.1), we per-
formed hierarchical clustering, using data through
January, 2023. The resulting seven clusters are illus-
trated in Fig. 3.
The first cluster (mostly the United States) was
distinctive due to its pronounced and early BA.2.12.1
transition and substantial BA.1.1 transition. The second
(Mexico and part of South America), third (primarily
Western Europe and Australia), fourth (Eastern Europe,
Russia, China, and Brazil), and fifth (e.g., Singapore,
Indonesia, and Pakistan) clusters tended to be compar-
atively similar on average, with the second cluster hav-
ing slightly higher BA.2.12.1 and BA.4 prevalences on
average. The sixth (India) cluster was distinctive in that
the Omicron transitions were dominated by Omicron
www.thelancet.com Vol 91 May, 2023
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Fig. 3: Hierarchical clustering of k (maximum transition slope), t (relative timing of transition), and u (maximum prevalence) across Omicron
variant waves, excluding Omicron BA.2.75, XBB, and BQ.1. The semi-transparent circles overlaid on the map provide estimates for included sub-
national region locations. Some sub-national regions outside of contiguous national boundaries (e.g., Greenland, a sub-region of Denmark) are
instead filled in with the appropriate color to reflect the regional value. Countries shown in grey are those for which data were either unavailable
or insufficient. The heatmap illustrates the estimated summary metrics for all locations and all Omicron variant transitions considered for
clustering. South Africa and India were notable for their distinctive transition dynamics.
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Fig. 4: Global estimate boxplots of k, the maximum slope of the variant transition curve, by the number of co-circulating variants (including the
variant itself) at the time of variant 5% prevalence. Kendall’s τb correlation and corresponding 95% confidence intervals are also provided.
Overall, a higher number of co-circulating variants was associated with lower transition speed for many variants. Rectangles represent the 25th–
75th quantiles of the plotted variable, and outliers are defined as values exceeding 1.5 times the inter-quartile range beyond the rectangle in
either direction.
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BA.2 only, with comparatively low prevalence of all other
variants, including Omicron BA.5. BA.5 had just begun
to increase in India when the BA.2 sublineage BA.2.75
rapidly became the dominant form regionally (Figs. 1
and 2). The seventh South Africa cluster led the world
in earliest Omicron transitions. Omicron BA.1 and BA.4
transitions were particularly rapid and large in South
Africa, which had a comparatively low rate of BA.1.1
expansion despite its earliest detection there. As illus-
trated in Supp. Fig. B.1, the India and South Africa
clusters were clear outliers.

Exploring relationships between variant transitions
and contemporaneous disease landscape
The clustering analysis indicated that Omicron variant
transitions tended to be more similar between some
location pairs than others, suggesting there may be a
link between transition dynamics and location charac-
teristics. In Supp. Fig. C.6, we explored correlations
between transition summary metrics and location char-
acteristics (Supp. Fig. C.6).

In Fig. 4, we investigated the relationship between
the maximum transition slope and the number of co-
circulating variants when each variant reached 5%
prevalence. A higher number of co-circulating variants
was associated with lower transition speeds overall
(Kendall’s τb −0.23, 95% CI −0.28, −0.19), and this as-
sociation was also seen after stratifying by variant.

In Fig. 5, we plotted variant transition summary
metrics as a function of population vaccination rates.
Supp. Fig. C.7 provides Kendall’s τb correlation esti-
mates by variant. Higher vaccination rates were associ-
ated with later and slower global spread before the Mu
and Delta variants emerged, when vaccination rates
were generally low. For Omicron, however, vaccination
rates were at most weakly associated with the speed and
timing of variant transitions.

We then estimated the adjusted associations between
location characteristics and the transition summary
metrics using both random forest and regression
modeling (Fig. 6). We used two modeling approaches,
since each contributes a different element of the story.
Random forest modeling accounts for complicated in-
teractions between variables, while regression provides
interpretable parameter estimates. All models also
adjusted for variant, which was generally the most
important predictor of each summary metric (not
shown).

Even after adjusting for location characteristics and
multiple testing, vaccination status was associated with
variant transition dynamics pre-Mu/Delta. In particular,
one additional vaccinated person per 5 was associated
with a 16% (95% CI: 10–24%) later time to variant
transition. Higher vaccination rates were also associated
with lower transition peak prevalences pre-Mu/Delta.
These strong associations were not observed during
the Omicron waves and were not observed or were
attenuated during the Mu and Delta waves.

A higher number of co-circulating variants was
strongly associated with slower and lower peak-
www.thelancet.com Vol 91 May, 2023
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Fig. 5: Global estimates of t and k, the timing and magnitude of the maximum slope of the transition curve, by the vaccination rate at the time
of variant 5% prevalence. 95% confidence bands (Bonferroni multiple testing adjusted) for the fitted linear regression for each panel are shown
in gray. Higher vaccination rates were associated higher transition speed and later transitions prior to the Mu/Delta variants. We did not see a
clear association between vaccination and transition properties for Mu and Delta variants, and the association appeared attenuated for Omicron
sub-variants.
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prevalence variant transitions. A higher prior COVID-
19 case rate per million, a shorter time since the last
case wave peak, and lower population density were all
associated with later variant transitions. A higher prior
COVID-19 case rate per million was also associated
with lower speed and lower peak-prevalence variant
transitions.

Discussion
Although highly efficacious COVID-19 vaccines were
developed with unprecedented speed and have sub-
stantially helped temper the impact of the pandemic, the
continuing evolution of SARS-CoV-2 has been associ-
ated with new waves of disease spread and with viral
variants that have become progressively more infectious
and resistant to protective antibodies.7,8,11 A variant with
a selective advantage can quickly become the most
prevalent virus after its emergence and can radically
change the clinical landscape of virus transmission. An
emerging variant’s relative selective advantage is re-
flected in the speed, timing, and magnitude with which
the emerging variant out-competes existing variants in a
given country. In this work, we characterized variant
transitions across 16 SARS-CoV-2 variants and 230
countries and sub-country regions throughout the
COVID-19 pandemic. We also explored relationships
www.thelancet.com Vol 91 May, 2023
between properties of the variant transitions and
contemporaneous disease landscape (e.g., vaccination
rates, convalescent immunity due to past infections, and
demographics). Through our exploration of emerging
variants Omicron XBB, and BQ.1, we also illustrated
how these metrics can be used to monitor ongoing
variant transitions. We found that the transitions to
BQ.1 in countries where it has already become estab-
lished was relatively rapid (Fig. 2). This result is
consistent with a selective advantage, providing further
impetus for current efforts to better resolve biological
characteristics of emerging viral lineages.

In this paper, we demonstrated that historical variant
transition dynamics differed substantially between lo-
cations (Fig. 2) and were associated with vaccination
rates, prior infection rates, the time since the last
COVID-19 peak, population demographics, and the
number of co-circulating variants in competition with
the emergent variant (Figs. 4–6). In particular, stronger
convalescent immunity (due to higher prior infection
rates and a shorter time since the last COVID-19 peak)
was associated with later and lower peak-prevalence
variant transitions relative to other countries, suggest-
ing that the new variant transitions may be slower and
less complete in locations with a large recent disease
burden, consistent with protective antibodies being at
9
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Fig. 6: Relative importance (a) and regression model coefficient estimates (b) of two adjusted models for associations between location
characteristics and variant transition summaries. A comparison of random forest-predicted summary metrics to estimates from (Eq. 2) is shown
in (c). Vaccination rates, cumulative prior cases per million, population density, population age, the time since the last case wave peak, and the
number of co-circulating variants were all associated with variant transition dynamics after adjusting for other location characteristics.1
1Random forest importance measured in terms of percent increase in mean squared prediction error. For regression modeling, continuous
predictors were scaled by constants,29 and point estimates and 95% confidence intervals are provided. Gaussian, Quasi-Poisson, and Beta
regression were used for log10(k), t, and u, respectively. All models also adjusted for variant/sub-variant. Missing predictor information was
handled using imputation. The out-of-bag root mean squared prediction error (RMSE) for random forest and regression models, respectively,
were as follows: 0.217 vs. 0.271 for log(k), 16.39 vs. 20.78 for t, and 0.138 vs. 0.188 for u. RMSE was calculated across 10,000 bagged trees for
random forest models and using 10-fold cross validation separately for each imputed dataset for regression models.
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higher levels due to recent stimulation and potentially
being more cross-reactive if they were elicited by a
variant that was more closely related to a newly emer-
gent form.30,31

The association between vaccination rates is partic-
ularly interesting; while higher vaccination rates were
associated with slower transitions prior to Delta and Mu,
the Delta and Mu variants were key inflection points.
Among Omicron variants, the association was attenu-
ated (Fig. 5), consistent with Omicron’s resistance to
vaccine-elicited neutralizing antibodies, which are a key
aspect of protection from infection.7,8,11 The ability of
bivalent vaccines to offer additional protection against
Omicron-related infections is still being resolved,32,33

and the neutralizing antibody sensitivity of emergent
variants may impact the ability of vaccine boosters to
slow transition times to new variants going forward.

The analyses in this paper are subject to many po-
tential biases. Firstly, the SARS-CoV-2 sequences that
are available may not be representative of circulating
variants. For example, sequencing efforts may over-
sample a large outbreak or over-sample cases tied to
an emerging variant. See Supp. Section E for a more
extensive discussion of this topic. Future work should
explore strategies for quantifying biases in GISAID
sequence reporting by location over time. To add addi-
tional complication, data quality issues such as strings
of ambiguous base calls can result in Pango designation
mis-assignments and changing Pango lineage designa-
tions as the virus evolves can obfuscate emerging variant
transitions. Confirmed COVID-19 case and vaccination
data are also imperfect, with substantial under-reporting
that likely varies over time. Missing data also presents a
challenge, and the imputation methods we have used to
address the missing data have implicit assumptions
about the representativeness of the observed data. All
regression models used in this analysis have corre-
sponding assumptions, and care was taken to evaluate
these assumptions. Residual model misspecification
bias, including but not limited to lack of fit of the
multinomial regression model for particular location x
variant combinations, could potentially impact these
results. This analysis does not account for differing
types of COVID-19 vaccines available worldwide, where
vaccine-induced immunity may differ between vaccine
types or manufacturers. If such detailed vaccine data
becomes globally available, future work could explore
whether vaccination type may modify the association
between vaccination and variant transition dynamics.

Although there has been a remarkable global effort to
track and understand transitions during the pandemic,
still SARS-CoV-2 and COVID-19 data streams are biased
toward higher-income countries, since low- and middle-
income countries tend to have less complete data and to
submit fewer sequences to GISAID. Because we had
inclusion requirements based on completeness and
volume of sequence submissions, many variant-by-
www.thelancet.com Vol 91 May, 2023
location combinations were omitted. As a result, our
analyses are implicitly biased toward data collected in
higher-income countries, as shown in Supp. Fig. A.4a.

Overall, this analysis highlights the complicated re-
lationships between variant transitions and the
contemporaneous immunologic and clinical context.
Additionally, our results demonstrate substantial het-
erogeneity in how an emerging variant interacts with co-
circulating variants across locations. Future work may
be able to leverage this heterogeneity and data on his-
torical variant transitions to help forecast how emergent
variants may behave in the future, potentially using
observed transitions in the variant’s country of origin to
forecast the variant’s future transition properties in
other countries.
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