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2 Institute of Public Health, Charité–Universitätsmedizin Berlin, Berlin, Germany, 3 Epidemiology and

Modelling of Antibiotic Evasion, Institut Pasteur, Université Paris Cité, Paris, France, 4 Anti-infective Evasion
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Abstract

Despite the availability of effective vaccines, the persistence of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) suggests that cocirculation with other pathogens

and resulting multiepidemics (of, for example, COVID-19 and influenza) may become

increasingly frequent. To better forecast and control the risk of such multiepidemics, it is

essential to elucidate the potential interactions of SARS-CoV-2 with other pathogens; these

interactions, however, remain poorly defined. Here, we aimed to review the current body of

evidence about SARS-CoV-2 interactions. Our review is structured in four parts. To study

pathogen interactions in a systematic and comprehensive way, we first developed a general

framework to capture their major components: sign (either negative for antagonistic interac-

tions or positive for synergistic interactions), strength (i.e., magnitude of the interaction),

symmetry (describing whether the interaction depends on the order of infection of interacting

pathogens), duration (describing whether the interaction is short-lived or long-lived), and

mechanism (e.g., whether interaction modifies susceptibility to infection, transmissibility of

infection, or severity of disease). Second, we reviewed the experimental evidence from ani-

mal models about SARS-CoV-2 interactions. Of the 14 studies identified, 11 focused on the

outcomes of coinfection with nonattenuated influenza A viruses (IAVs), and 3 with other

pathogens. The 11 studies on IAV used different designs and animal models (ferrets, ham-

sters, and mice) but generally demonstrated that coinfection increased disease severity

compared with either monoinfection. By contrast, the effect of coinfection on the viral load of

either virus was variable and inconsistent across studies. Third, we reviewed the epidemio-

logical evidence about SARS-CoV-2 interactions in human populations. Although numerous

studies were identified, only a few were specifically designed to infer interaction, and many

were prone to multiple biases, including confounding. Nevertheless, their results suggested

that influenza and pneumococcal conjugate vaccinations were associated with a reduced

risk of SARS-CoV-2 infection. Finally, fourth, we formulated simple transmission models of
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SARS-CoV-2 cocirculation with an epidemic viral pathogen or an endemic bacterial patho-

gen, showing how they can naturally incorporate the proposed framework. More generally,

we argue that such models, when designed with an integrative and multidisciplinary per-

spective, will be invaluable tools to resolve the substantial uncertainties that remain about

SARS-CoV-2 interactions.

1. Introduction

As of August 2022, the pandemic of coronavirus disease 2019 (COVID-19)—caused by the

novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—has resulted in at least

598 million cases and 6.4 million deaths worldwide [1]. Despite the implementation of strin-

gent control measures and the increasing rollout of effective vaccines in many locations, the

persistent circulation of SARS-CoV-2 suggests the infeasibility of elimination and the gradual

transition to endemic or seasonal epidemic dynamics [2]. Hence, cocirculation of SARS-CoV-

2 with other pathogens may become increasingly frequent and cause multiple simultaneous

epidemics of, for example, COVID-19 and influenza [3].

Interaction—i.e., the ability of one pathogen to alter the risk of infection or disease caused

by another pathogen (Fig 1)—is an essential aspect to forecast the dynamics of cocirculating

infectious diseases. From a public health perspective, interactions may significantly aggravate

the incidence of infection and the disease burden, as demonstrated for immunosuppressive

viruses like measles [4] and human immunodeficiency virus (HIV) [5]. Another interesting,

yet understudied public health implication of interactions is the possibility of off-target effects

of vaccines on nontarget pathogens, as suggested for influenza vaccines [6,7]. However, despite

their potentially large relevance to SARS-CoV-2 epidemiology and COVID-19 control mea-

sures, the interactions of SARS-CoV-2 with other pathogens remain poorly defined.

Here, we aimed to review the current body of evidence about the interactions of SARS-

CoV-2 with cocirculating pathogens. We first present a general framework to capture the com-

plexities of interactions and study them in a systematic and comprehensive way. Using this

framework, we then review the results of published experimental and epidemiological studies.

Finally, we formulate simple transmission models incorporating the proposed framework to

illustrate the potential population-level impact of SARS-CoV-2 interactions.

2. Dissecting pathogen interactions: sign and strength, timing, and

mechanisms

Multiple elements are needed to fully characterize pathogen interactions, making their general

study complex. To study interactions in a systematic and comprehensive way, we propose a

conceptual framework—depicted schematically in Fig 1—that incorporates three essential

components of interaction, detailed below.

2.1. Sign and strength of interaction

The first dimension of this framework is the sign and strength of interaction. Here, we define

the sign of interaction as positive in synergistic interactions (where a first pathogen increases

the risk of infection or disease of a second pathogen) and negative in antagonistic interactions

(where the risk is decreased), and we refer to strength as the magnitude of the effect on a given

parameter exerted by one pathogen on another.
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An example of negative interaction exists between influenza A virus (IAV) and human

respiratory syncytial virus (RSV), for which experimental studies have shown that a recent

IAV infection inhibits the growth of RSV in ferrets [8] and in mice [9]. By contrast, IAV inter-

acts positively with Streptococcus pneumoniae (the pneumococcus) by promoting bacterial

growth [10,11]. This illustrates that interaction is pathogen-specific and cannot be easily

extrapolated to other pathogen systems.

2.2. Time dependency of interaction

The second dimension of our proposed framework is time dependency: Both the time between

infections and the sequence of infection can affect the sign and strength of an interaction.

Fig 1. A conceptual framework to study pathogen interactions. For a given pair of pathogens, interaction can be characterized by its sign and strength (panel

A), which, in turn, depend on the time interval between infections (duration of interaction) and on the sequence of infection (symmetry of interaction) (panel

B). Examples include negative, symmetric interactions (as in the case of influenza B virus Victoria lineage and Yamagata lineage [15]) and negative, asymmetric

interactions (as in the case of rhinovirus and influenza A virus or respiratory syncytial virus [18]). Interaction can be caused by different biological mechanisms

(panel C), which determine its positive or negative effects on susceptibility to infection, transmission (transmissibility and duration of infection), or disease

severity at the individual level and, in turn, its impact at the population level.

https://doi.org/10.1371/journal.ppat.1011167.g001
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Duration of interaction and time between infections. Due to the kinetics of cellular and

humoral immune responses following respiratory infections [12–14], the strength of interac-

tion can change with time between infections. For example, primary IAV infection prevented

subsequent RSV infection in ferrets when exposed 3 days later, but the protection disappeared

as the time between IAV and RSV challenges increased to 11 days [8]. Such short-lived nega-

tive interaction was also observed between influenza B virus Victoria lineage (B/Vic) and

Yamagata lineage (B/Yam) [15]. Interaction can be long-lived if it is mediated by immune

memory. For example, measles infection can partially erase previously acquired immunity to

other pathogens, causing “immune amnesia” [16]. Childhood exposures to a given IAV sub-

type can cause long-lasting immunological bias that shapes the individual’s subsequent risk for

influenza infection [17].

Symmetry of interaction and sequence of infection. The sequence of infection can also

affect the interaction, as evidenced by the asymmetric effects found in previous studies. For

example, prior infection with IAV or RSV hindered rhinovirus (RV) replication, but prior RV

infection did not interfere with IAV and RSV replication in human airway epithelium [18].

While IAV infection predisposed individuals to pneumococcal colonization and infection

[19–21] and led to more severe disease [22], evidence from animal and human challenge stud-

ies demonstrated that prior pneumococcal colonization did not lead to more severe disease

[20,23,24] but might have had a protective effect against viral replication [24,25] upon subse-

quent IAV challenge. Interestingly, this effect might depend on the density of pneumococcal

colonization [20,23,24].

By contrast, when a negative interaction is symmetric between two pathogens, whichever of

the two pathogens is the first to infect can inhibit subsequent infection by the other pathogen

—as in the case of influenza B lineages [15].

2.3. Biological mechanisms and population-level impact of interaction

The third dimension in our framework is the mechanism of interaction: Interaction can be

caused by different biological mechanisms, which determine its positive or negative effects on

susceptibility to infection, characteristics of infection (such as transmissibility and duration),

or disease severity at the individual level and, in turn, its impact at the population level (Fig

1C).

Biological mechanisms. Examples of biological mechanisms of pathogen interaction

include intracellular and physiological changes and effects on the immune response, on the

respiratory microbiota, and on host behaviors. A pathogen can induce changes to the host cells

that are beneficial or detrimental to another pathogen. For example, it has been shown that

RSV and human parainfluenza virus 3 (HPIV-3) increase the expression of receptors for Hae-
mophilus influenzae and the pneumococcus binding in bronchial epithelial cells [26]. In both

cases, changes in cellular expression may lead to a positive interaction. A pathogen can cause

changes to the host’s immune profile (e.g., depletion of CD4+ T cells by HIV [5], increased

interferon response by IAV [9]), facilitating or hindering infection with a second pathogen.

Moreover, a pathogen can change the physiological environment to potentiate a secondary

infection by another pathogen. For example, the replication of IAV in the respiratory epithe-

lium reduces mucociliary clearance and damages epithelial cells, resulting in enhanced attach-

ment and invasion of the pneumococcus [21]. Changes in the respiratory tract microbiota by

an infection can lead to the acquisition of a new pathogen or to overgrowth and invasion of an

already present pathogen [27–29]. Lastly, changes in host behaviors caused by infection with a

first pathogen can affect the risk of subsequent infection with another pathogen, even in the
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absence of within-host interaction between the two. Examples include self-isolation to reduce

the spread of disease in humans and reduced social contacts between infected animals [30,31].

Additionally, the existence of other interaction mechanisms is suggested by a recent study,

which demonstrated that coinfection with IAV and RSV could lead to the formation of hybrid

viral particles with altered antigenicity and expanded cell tropism [32].

Population-level impact. The biological mechanisms outlined above may affect popula-

tion-level dynamics through their effects on different epidemiological parameters: susceptibil-

ity to infection, transmission of infection (characterized by the transmissibility and the

duration of infection), and disease severity. Hence, estimating how these parameters vary in

individuals coinfected or previously infected with a potential interacting pathogen can provide

quantitative evidence for different mechanisms of interaction. Of note, multiple biological

mechanisms can affect the same epidemiological parameter; conversely, the same biological

mechanism can affect multiple epidemiological parameters. For example, IAV-induced epithe-

lial damage and dampened pneumococcal clearance increase host susceptibility to the pneu-

mococcus and disease severity in coinfection, as suggested by historical pandemics [33],

demonstrated in experimental studies [19], and inferred from mechanistic modeling of epide-

miological time-series [34,35]. The effect of interaction on transmission is more difficult to

measure, as it is determined not only by the susceptibility of the exposed and the transmissibil-

ity of the infected, but also by the contact patterns between the two [36]. However, this effect

can be approximated with animal models [37–39] or estimated with mathematical modeling

based on epidemiological data [36]. Of note, as shown by the decline in various respiratory

infections following the nonpharmaceutical interventions in the COVID-19 pandemic [36,40–

43], transmission can be changed substantially by host behaviors.

3. Review of evidence on SARS-CoV-2 interactions

3.1. Experimental evidence from animal models

Having proposed a framework to study interactions, we now review experimental studies on

coinfections with SARS-CoV-2 in animal models. As of August 22, 2022, we identified 14 pub-

lications [44–57]. We first review the 11 studies that focused on SARS-CoV-2 and nonattenu-

ated IAV.

Experimental studies of coinfection with SARS-CoV-2 and nonattenuated IAV. As

shown in Fig 2, three different animal models were used (ferrets, hamsters, and mice), and the

experimental designs varied substantially across the 11 studies, particularly in the sequence of

infection, the time between infections (range: 0 to 21 days), and the follow-up duration (range:

3 to 24 days since first infection, 2 to 20 days since the second infection). Nine studies [44–

48,50–53] examined coinfections with IAV preceding SARS-CoV-2, six [47,49–53] with

SARS-CoV-2 preceding IAV, and five with simultaneous infections [47,48,50,52,54]. Of note,

only three studies [47,50,52] compared all three infection sequences, and only four studies

[46,49,50,52] compared different times between infections. Furthermore, the studies also var-

ied widely in the inoculation dose (IAV range: 8 × 101 to 1.3 × 109 PFU; SARS-CoV-2 range:

1 × 101 to 7 × 105 PFU), with a single study [47] evaluating the effect of different doses. The

studies used different IAV subtypes (H1N1 [44–49,51–54] and H3N2 [50,54]) and SARS-

CoV-2 lineages (A [49,51,52,54], B [44,45,47,53], B.1 [46,50], and B1.1 [48]), as well as different

strains within subtypes and lineages. Finally, only one study compared the effects of IAV

(H1N1) and IAV (H3N2) [54]. Due to the limited number of studies and the large heterogene-

ity across them, we compare the results for SARS-CoV-2 and IAV (H1N1) coinfection only

qualitatively.
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Fig 2. Experimental designs of animal studies assessing the interaction between SARS-CoV-2 and influenza A virus (IAV). [44–54]. The

protocols of the experiments in mice, hamsters, and ferrets were summarized to allow comparison across studies. Red points represent the time

point for infection with SARS-CoV-2 and blue points for infection with IAV (filled points represent infection with IAV (H1N1) and empty

points with IAV (H3N2)). Triangles represent the time at which samples from sacrificed animals were taken. The data from every study were

extracted from the text, the tables, or the figures; all the corresponding values were checked and are available in S1 and S2 Tables.

https://doi.org/10.1371/journal.ppat.1011167.g002
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As shown in Fig 3A, the severity of monoinfection with either IAV or SARS-CoV-2 differed

between animal models. In ferrets, monoinfection with IAV, but not with SARS-CoV-2,

resulted in weight loss, while the opposite was observed in hamsters. In mice, however, both

monoinfections generally caused weight loss. Also, unlike the hamster and ferret models, mice

can develop severe COVID-19 and die, so this model was used in all studies that analyzed sur-

vival (Fig 3B). On the whole, these results agree with earlier evidence of the advantages and

limitations of different animal models for in vivo research on IAV and SARS-CoV-2 [58,59].

In all but one study, the effect of coinfection on disease severity was quantified by tracking

changes in the animals’ body weight. In mice and, to a lesser extent, in hamsters, animals

Fig 3. Summary results from animal studies assessing the effect of coinfection with SARS-CoV-2 and influenza A virus (IAV) on disease severity. [44–

49,51–54]. In panel A, the y-axis values represent the weight relative to baseline, calculated when the maximal weight loss was observed (or, if the animals did

not lose weight, when the maximum weight gain was observed), and colors represent different studies. In panel B, the y-axis values represent the fraction of

animals alive at the end of the experiment, and colors represent the times between infections. The data from every study were extracted from the text, the tables,

or the figures; all the corresponding values were checked and are available in S1 and S2 Tables.

https://doi.org/10.1371/journal.ppat.1011167.g003
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coinfected suffered a higher maximal weight loss than animals monoinfected with either IAV

or SARS-CoV-2 (Fig 3A, S1 Table). In ferrets, however, the maximum weight loss after coin-

fection was relatively comparable to that after IAV monoinfection. In keeping with the results

based on weight loss, the three studies that measured survival (all using the mice model) found

that coinfected animals either suffered higher mortality [46,51] or died faster [45] than mono-

infected animals (Fig 3B, S1 Table).

In contrast to the relatively consistent results on disease severity, the effect of coinfection on

viral load—quantified as the ratio of viral load during coinfection to that during monoinfec-

tion—was more heterogeneous across studies (Fig 4, S2 Table). In addition to the sources of

heterogeneity outlined above, the studies varied in the technique used to quantify viral load

(either reverse transcription quantitative polymerase chain reaction [RT-qPCR], plaque-based,

or median tissue culture infectious dose [TCID50] assays) and in the sample type (swabs or tis-

sue) and location (lower respiratory tract [LRT] or upper respiratory tract [URT]). These dif-

ferences may affect the inferred sign and strength of interaction: For example, the load of

infectious viruses—which only plaque-based or TCID50 assays can quantify—in the URT is

likely a more relevant proxy of transmissibility [60] but was measured in only six studies

[46,47,50,52–54]. Overall, the effect size spanned six orders of magnitude and depended on the

location of the body compartment sampled. In the LRT, the viral load of SARS-CoV-2 was

generally reduced by preceding or simultaneous infection with IAV but increased by subse-

quent infection with IAV in hamsters (Fig 4A, left panel). The effect was more variable in mice

and inconclusive in ferrets because of a low number of studies. On the other hand, there was

no obvious pattern in the viral load of IAV, regardless of infection order (Fig 4A, right panel).

In the URT, fewer studies assessed the effect of coinfection on viral load and their results were

inconsistent (Fig 4B).

Of note, several studies suggested time dependencies in coinfection outcomes. First, the

maximum weight loss was typically observed 7 to 12 days post-infection ([45,46]; S1 Table), so

studies with shorter follow-ups could underestimate disease severity. Second, shorter times

between infections were found to increase disease severity in two studies [46,49] (Fig 3B, S1

Table) and the effect on viral load in one study [52].

In conclusion, despite large heterogeneity and inconsistencies across the studies reviewed,

the collective evidence from animal models shows that coinfection with IAV and SARS-CoV-2

causes more severe disease than monoinfection with either virus. Despite having clinical rele-

vance, these results do not necessarily demonstrate a positive interaction. This is because the

disease severity endpoints in all studies were nonspecific, making it difficult to hypothesize the

expected disease severity resulting from the mere co-occurrence of two independent infections

that do not interact. For example: if virus A monoinfection causes 10% mortality and virus B

monoinfection 20% mortality, what would be the expected mortality of coinfection if the two

viruses do not interact? Although it has been proposed that synergism is evidenced whenever

the severity of coinfection exceeds the maximal severity of monoinfection (20% in our exam-

ple) [61], this definition seems unsatisfactory when both pathogens cause disease. A way to cir-

cumvent this attribution problem would be to identify virus-specific endpoints predictive of

disease severity. Despite the availability of such endpoints to assess the effect of coinfection on

viral load, the collective evidence was inconclusive. A generally robust finding was that preced-

ing or simultaneous infection with IAV reduced the viral load of SARS-CoV-2 in the LRT.

However, only a few studies measured the viral load in the URT, which is likely a more rele-

vant proxy of transmissibility [60]. Therefore, further studies will be needed to demonstrate

the existence of interactions affecting susceptibility to, or transmissibility of, infection. In the

design of such studies, we argue that the strength of evidence could be increased by varying

the infectious dose (to better assess the strength of interaction) and the infection order (to
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Fig 4. Summary results from animal studies assessing the effect of coinfection with SARS-CoV-2 and influenza A virus (IAV) on viral loads. [44–49,51–

54]. The x-axis values represent the log10 ratio of the viral load of SARS-CoV-2 (left panels) or IAV (right panels) during coinfection to that during

monoinfection, in either the lower respiratory tract (panel A) or the upper respiratory tract (panel B). Every line represents the results of one experiment,

whose settings are summarized by four elements: (1) the sequence of infection, indicated by the text on the left y-axis; (2) the time interval between infections,

indicated by the number between parentheses on the right y-axis; (3) the time of first sample collection (relative to the time of last infection), indicated by the

colored number on the left y-axis; and (4) the times of subsequent sample collection (relative to the time of first sample collection), indicated by the size of the

points on the lines. For example, in the study by Kim EH (panel A, mice), the sequence of infection was IAV then SARS-CoV-2 with 3 days separating the

infections; the first sample was then collected 2 days after SARS-CoV-2 infection, and then 2 and 5 days after that first sample. The data from every study were

extracted from the text, the tables, or the figures; all the corresponding values were checked and are available in S1 and S2 Tables.

https://doi.org/10.1371/journal.ppat.1011167.g004
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assess the symmetry of interaction) and by considering different animal models (to check for

robustness).

Experimental studies of coinfection with SARS-CoV-2 and other pathogens. In addi-

tion to the previous studies, we identified three experimental studies on SARS-CoV-2 coinfec-

tion [55–57]. One study found that administering live attenuated influenza A vaccine 3 days

before SARS-CoV-2 infection reduced SARS-CoV-2 viral load in ferrets [55]. The second

study observed that SARS-CoV-2 infection after, but not before, pneumococcal infection,

increased the viral and bacterial loads, worsening disease severity and survival [57]. In con-

trast, the third study found that chronic infection with Mycobacterium tuberculosis inhibited

SARS-CoV-2 viral load, decreasing disease severity [56].

3.2. Epidemiological evidence

Although experimental studies using animal models can inform some of the components

required to characterize pathogen interactions (Fig 1), they are insufficient in predicting the

public health impact of interaction in humans, for at least two reasons. First, animal models

cannot fully recapitulate the biology of infection in humans, as illustrated by the ongoing

search for an appropriate animal model representative of severe COVID-19 disease in humans

[58]. Second, animal experimental studies may be underpowered to estimate the relative risk

of infection or severe disease in co- versus monoinfected individuals. Hence, epidemiological

studies remain indispensable to assess the significance of interaction in human populations.

We, therefore, reviewed the literature on SARS-CoV-2 and coinfections in human popula-

tions. The identified studies are classified into three categories: (1) studies that were based on

coinfection prevalence; (2) studies that examined the association between non-COVID vac-

cines and COVID-19; and (3) studies that examined the association between prior respiratory

infections and COVID-19.

Studies based on the detection of SARS-CoV-2 coinfections. Studies based on the detec-

tion of SARS-CoV-2 coinfections attempted to answer two research questions: (1) whether

coinfection with other pathogens change the severity of COVID-19, or (2) whether the detec-

tion of other pathogens was associated with a change in SARS-CoV-2 detection.

Four meta-analyses, covering a total of 95 studies that reported mortality outcomes,

addressed the first question. The first meta-analysis included only four studies, with large het-

erogeneity [62]. The second meta-analysis (which included 12 studies, of which 9 reported

mortality) estimated reduced mortality in patients coinfected with influenza from studies in

China, (OR = 0.51, 95% CI: 0.39 to 0.68, I2 = 26.5%) but increased mortality from studies out-

side China (OR = 1.56, 95% CI: 1.12 to 2.19, I2 = 1%) [63]. The two other meta-analyses

reported higher mortality in SARS-CoV-2 coinfections compared with SARS-CoV-2 monoin-

fections. However, one of them (which included 59 studies, of which 10 reported case fatality)

did not provide information about the infection order [64]; the other (which included 118

studies, of which 84 reported mortality) provided separate estimates for when other respiratory

pathogens were detected at the time of SARS-CoV-2 detection (OR = 2.84, 95% CI: 1.42 to

5.66) or after (OR = 3.54, 95% CI: 1.46 to 8.58), but pooled estimates for different age groups,

healthcare settings (ICU and non-ICU), and pathogens (bacterial, viral and fungal) [65]. In

general, all these studies require cautious interpretation, because confounders (such as comor-

bidities) may bias estimation.

Two studies used a test-negative design to address the second question, by comparing the

prevalence of SARS-CoV-2 infection (or other respiratory pathogen infection) in groups

infected versus uninfected with another pathogen (or with SARS-CoV-2) [66,67]. The first did

not find statistically significant differences in the proportion positive for other respiratory
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pathogens (including influenza) between patients negative and positive for SARS-CoV-2 [66],

while the other reported a 58% decrease in the risk of testing positive for SARS-CoV-2 among

influenza-positive cases [67]. However, this approach can be inappropriate for two reasons.

First, the prevalence of coinfections was likely underestimated due to the prescription of

empirical antibiotic treatment prior to microbiological investigation [68,69] and due to diag-

nostic strategies favoring SARS-CoV-2 diagnosis [70]. Moreover, when simultaneous testing

of multiple pathogens is limited, epidemics of cocirculating pathogens may artificially decrease

the positivity fraction of SARS-CoV-2 [71]. Second, a less appreciated, but more essential

problem of test-negative designs is that they can systematically underestimate the strength of

interaction and frequently infer the wrong sign of interaction for seasonal and emerging respi-

ratory viruses [72]. These issues caution against simple and seemingly intuitive measures of

pathogen interactions based on coinfection prevalence data, echoing earlier studies in infec-

tious disease ecology and epidemiology [73–75].

Studies examining the association between non-COVID vaccination history and

COVID-19. Since interacting pathogens form polymicrobial systems, interventions against

any pathogen in such systems may theoretically affect the others. For example, if there is a pos-

itive interaction between a vaccine-preventable respiratory pathogen (e.g., IAV or the pneu-

mococcus) and SARS-CoV-2, one may expect, with all else being equal, SARS-CoV-2-related

outcomes to be higher in unvaccinated individuals. A systematic review [76] and two meta-

analyses [77,78] have summarized a total of 30 articles on observational studies investigating

the association of influenza vaccine and SARS-CoV-2 infections and outcomes. While the ear-

lier systematic review (which included 12 studies) indicated that only some studies reported

significant inverse associations between influenza vaccination and SARS-CoV-2-related out-

comes [76], the later meta-analyses (which included 16 [77] and 23 studies [78], respectively)

found a significantly lower risk of SARS-CoV-2 infection associated with influenza vaccination

(OR: 0.86, 95% CI: 0.81 to 0.91 [77]; OR: 0.83, 95% CI: 0.76 to 0.90 [78]).

In contrast to influenza vaccines, we found no systematic review that examined the associa-

tion between pneumococcal conjugate vaccines (PCVs) or pneumococcal polysaccharides vac-

cines (PPSVs) and SARS-CoV-2 outcomes. Based on a literature review, we identified four

studies—2 on PCV and PPSV [79,80], 1 on PPSV only [81], and 1 on PCV only [82] (S3

Table). All three studies involving PPSV did not find conclusive evidence for an association

between PPSV history and SARS-CoV-2-related outcomes [79–81]. PCV was associated with

protection against COVID-19 infection, hospitalization, and mortality among older adults in

one cohort study [80], and against symptoms among SARS-CoV-2-infected children in

another cohort study [82]. Although inconclusive, the association estimated in a case–control

study [79] was consistent with that in the two cohort studies.

Findings from vaccine impact studies must be interpreted with caution when attempting to

infer pathogen interactions. First, although numerous studies attempted to estimate the effect

of various vaccines on COVID-19 outcomes, few accounted for healthy user bias, a common

form of selection bias whereby more active health-seeking behaviors can be a source of con-

founding [83]. As acknowledged by [84] and [85], this is often a limitation in observational

studies, as influenza vaccination is voluntary [85–88]. Second, even when epidemiological

studies adopting more robust study designs (e.g., prospective cohort) and inference methods

(e.g., Cox model with inverse propensity weighting) show that non-SARS-CoV-2 vaccines

confer protection against SARS-CoV-2 [80], one cannot distinguish if such protection stems

from hindering the positive interaction between two pathogens, or from the direct effect of the

vaccine on SARS-CoV-2—for example, via nonspecific immune responses such as trained

innate immunity [89].
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Studies examining the association between prior respiratory infections and COVID-

19. Four observational studies reported the association between prior respiratory infections

and COVID-19-related outcomes [90–93] (S4 Table). Prior influenza infection was reported

to be associated with increased COVID-19 susceptibility (OR: 3.07, 95% CI: 1.61 to 5.85 for 1

to 14 days prior, OR 1.91, 95% CI: 1.54 to 2.37 for 1 to 90 days prior) and severity (OR: 3.64,

95% CI: 1.55 to 9.21 for 1 to 14 days prior, OR: 3.59, 95% CI: 1.42 to 9.05 for 1 to 30 days

prior) in a case–control study [90]. This evidence, suggestive of a positive interaction between

influenza and SARS-CoV-2, is consistent with the findings from a mathematical modeling

study [94]. Although a retrospective cohort study reported that prior infection with endemic

human coronaviruses (hCoVs) was associated with protection against COVID-19-related ICU

admission (OR: 0.1, 95% CI: 0.1 to 0.9) [91], a case–control study on serum samples from hos-

pitalized COVID-19 patients found that hCoVs antibodies were not associated with protection

against SARS-CoV-2 infections nor hospitalizations [92]. Regarding the impact of upper respi-

ratory infections (URIs), a retrospective cohort study found lower risk (OR: 0.76, 95% CI: 0.75,

0.77) of testing positive for SARS-CoV-2 among individuals with URI diagnosed in the preced-

ing year [93], while a case–control study found higher risk among individuals diagnosed with

URI in the preceding 1 to 14 days (OR: 6.95, 95% CI: 6.38 to 7.58) and 1 to 90 days (OR: 2.70,

95% CI: 2.55 to 2.86) [90]. This discrepancy may be explained by the different URI definitions

and time frames for exposure measurement, in addition to different study designs and

included confounders. Because these studies provided information about the infection time-

line, they offered stronger evidence to infer pathogen interactions than studies based on coin-

fection prevalence, and also more direct evidence than studies examining the association

between non-COVID vaccines and COVID-19. Nevertheless, one should beware of how mis-

classification of exposure and imperfect control for confounding can limit such study designs

in inferring pathogen interactions.

In summary, the evidence available from human population health data indicates that coin-

fection prevalence is largely variable, that influenza vaccines and PCVs may be associated with

reduced risk of SARS-CoV-2, and that earlier influenza infection may be associated with

increased risk of SARS-CoV-2 infection and disease severity. However, our review also

highlighted the limitations in the current epidemiological literature, as many studies were

prone to multiple biases, including confounding, and only very few [90–94] were designed to

infer interaction.

4. The need for transmission models to study epidemiological

interactions

As reviewed above, the results of epidemiological studies can be difficult to interpret and their

designs insufficient to characterize all the components of interactions (Fig 1). Arguably, more

integrated approaches are therefore needed to capture the complexities described above and to

determine how individual-level mechanisms of interaction translate into population-level

dynamics of infection or disease.

Mathematical models of transmission offer a powerful and economical tool to study infec-

tious disease dynamics [95]. To study pathogen interactions, such models can be formulated

to incorporate biologically explicit mechanisms of interaction (in addition to the other ele-

ments of the framework proposed above) and predict their potentially nonlinear effects on

transmission dynamics [96]. By design, these models translate between scales, such that the

population-level impact of a given individual-level mechanism of interaction can be simulated

and predicted. To illustrate the relevance of such models, we formulated two basic models of

SARS-CoV-2 interaction (see more details and equations in the Supporting information), with
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either an endemic colonizing bacterium (parametrized to represent the pneumococcus) or an

epidemic respiratory virus (parametrized to represent influenza) circulating prior to SARS-

CoV-2. In both cases, we assumed a nonsymmetric (i.e., no effect of SARS-CoV-2 on the other

pathogen) interaction that caused a 1- to 5-fold (strength) decrease or increase (sign) of

SARS-CoV-2 transmission (mechanism) from coinfected individuals (duration of interaction

equal to the infectious period of the other pathogen). Importantly, the within-host processes

causing interaction were not explicitly modeled, but their effects were represented by these

interaction parameters; other mechanisms of interaction—impact on susceptibility to infec-

tion, duration of infection, or disease severity (Fig 1)—would be similarly modeled by parame-

ters representing relative changes in the corresponding epidemiological parameters. As shown

in Fig 5A, we find that even a moderately strong (2-fold) interaction with an endemic coloniz-

ing bacterium can substantially affect the dynamics of SARS-CoV-2, increasing its peak inci-

dence 1.96-fold for positive interaction when the prevalence of bacterial colonization reaches

50% of the population (as frequently observed in young children for the pneumococcus

[97,98]). By contrast, equally strong (2-fold) interaction with an epidemic virus is predicted to

have a much smaller maximal impact (1.03-fold increase) on the dynamics of SARS-CoV-2

(Fig 5B). Of note, the maximal impact is predicted at intermediate levels of transmissibility of

the epidemic virus, corresponding to maximal epidemic overlap with SARS-CoV-2 (Fig 5B).

Fig 5. Predicted impact of interaction on SARS-CoV-2 dynamics from mathematical models of SARS-CoV-2 interaction. Panel A: Interaction with

colonizing bacteria (e.g., Streptococcus pneumoniae). Panel B: Interaction with a seasonal virus (e.g., influenza A virus). Insets represent three example

simulations for each of the two models, varying the prevalence of bacterial colonization (C0) and the basic reproduction number (R0) of the interacting virus

(the circle, triangle, and square symbols indicate the corresponding parameter values in the main figures). Note, the vertical axes are on different scales,

showing the more pronounced impact of interactions with endemic colonizing bacteria. The data presented are primary data, generated from illustrative

models designed for the purpose of this review; full model details are included in S1 Appendix.

https://doi.org/10.1371/journal.ppat.1011167.g005
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This finding emphasizes a major difference between endemic and epidemic pathogens: For the

latter, the impact of even strong interactions may remain subtle and manifest itself only after a

prolonged period of cocirculation with SARS-CoV-2. Overall, these numerical experiments

suggest the value of mathematical models to study interactions in a biologically explicit and

comprehensive way and to predict their complex (and potentially unexpected) effects at the

population level.

Although voluntarily oversimplified and used here only for illustrative and exploratory pur-

poses, these models can be readily extended to add components relevant to SARS-CoV-2 epi-

demiology, such as age, vaccination, or temporal variations in transmission caused by new

variants, seasonality, or changing control measures. In real-world applications, however,

model parametrization can be a substantial challenge, as the values of many parameters may

be neither directly observable nor fixed from empirical evidence. This problem is particularly

salient for parameters characterizing interaction, whose values can be only partially inferred

from experimental and epidemiological studies. To overcome this uncertainty, novel statistical

inference techniques can be used to systematically compare the likelihood of different hypoth-

eses about the mechanism, strength, and duration of interaction [99,100]. The potential of this

approach is demonstrated by earlier successful applications [101,102], in particular to the sys-

tem influenza–pneumococcus [33,34,103]. So far, however, few modeling studies have

attempted to estimate the interactions of SARS-CoV-2 [94,104], presumably because of the

near disappearance of many common diseases—caused, for example, by influenza and the

pneumococcus [40,41]—after the implementation of stringent control measures against

COVID-19. In light of the likely relaxation of these measures and the ensuing increase in cocir-

culating pathogens, we anticipate that confronting mathematical models with detailed epide-

miological surveillance data will increasingly provide valuable insights into the interactions of

SARS-CoV-2. Based on the modeling literature cited above and our own experience, we expect

such estimation to succeed with routine longitudinal data collected at a fine temporal scale

(e.g., weekly counts of infections or hospitalizations), possibly supplemented with other cross-

sectional or longitudinal data streams (e.g., seroprevalence or multiplex PCR data to inform

the prevalence of prior infections or active coinfections).

5. Conclusions

As population immunity against COVID-19 accrues in many regions worldwide, it is critical

to understand the factors that will affect the future transmission dynamics of SARS-CoV-2 [2].

Here, we proposed that interactions with cocirculating pathogens will be such a key factor.

Indeed, such interactions may have notable public health implications, in particular for fore-

casting and controlling SARS-CoV-2 epidemics and for predicting the off-target impacts of

vaccines. The scientific implications of interaction are also notable and may lead to consider-

ing SARS-CoV-2 as part of polymicrobial systems whose individual components cannot be

well studied separately.

Despite the relevance of interaction, our review identified only a few experimental studies

in animal models, with markedly different designs and the majority focusing on SARS-CoV-2

interaction with IAV. A robust finding from our comparative analysis is that SARS-CoV-2 and

IAV coinfections can increase the severity of COVID-19. By contrast, the estimated effect of

coinfection on influenza and SARS-CoV-2 viral loads differed markedly across studies, pre-

sumably because of the heterogeneous designs and methods to quantify viral load. Perhaps less

surprisingly, the design and the results of epidemiological studies on interaction also varied

widely. Although previous influenza vaccination was generally associated with a reduced risk

of COVID-19, this finding alone does not necessarily provide evidence of positive interaction
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and may be equally well explained by direct, nonspecific effects of influenza vaccines on host

immunity. Nevertheless, the evidence from epidemiological [90] and mathematical modeling

[94] studies suggests a facilitatory effect of previous influenza infection on SARS-CoV-2 infec-

tion. Besides influenza, few studies investigated the impact of other pathogens, in particular,

other major respiratory viruses like RSV and rhinoviruses, or colonizing bacteria like the

pneumococcus [105]. In particular, research specific to interactions with endemic bacteria is

called for, because—as illustrated by our simple model—these could substantially affect the

dynamics of SARS-CoV-2. As a more general conclusion, our review suggests the urgent need

for further experimental and epidemiological studies to unequivocally infer SARS-CoV-2

interactions.

Altogether, our review highlights the significant gaps that remain in our knowledge of

SARS-CoV-2 interactions. The general framework proposed to dissect interaction may there-

fore be useful to guide further research in this field. We argue that mathematical models of

transmission offer an intrinsically efficient way to incorporate this framework. Hence, we

submit that such models—designed with a multidisciplinary perspective that integrates evi-

dence across scientific fields—will prove to be valuable tools to decipher the interactions of

SARS-CoV-2.
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23. Cuypers F, Schäfer A, Skorka SB, Surabhi S, Tölken LA, Paulikat AD, et al. Innate immune responses

at the asymptomatic stage of influenza A viral infections of Streptococcus pneumoniae colonized and

non-colonized mice. Sci Rep. 2021; 11:20609. https://doi.org/10.1038/s41598-021-00211-y PMID:

34663857

24. de Steenhuijsen Piters WAA, Jochems SP, Mitsi E, Rylance J, Pojar S, Nikolaou E, et al. Interaction

between the nasal microbiota and S. pneumoniae in the context of live-attenuated influenza vaccine.

Nat Commun. 2019; 10:2981. https://doi.org/10.1038/s41467-019-10814-9 PMID: 31278315

25. Wolf AI, Strauman MC, Mozdzanowska K, Williams KL, Osborne LC, Shen H, et al. Pneumolysin

expression by Streptococcus pneumoniae protects colonized mice from influenza virus-induced dis-

ease. Virology. 2014;462–463:254–265.

26. Avadhanula V, Rodriguez CA, DeVincenzo JP, Wang Y, Webby RJ, Ulett GC, et al. Respiratory

Viruses Augment the Adhesion of Bacterial Pathogens to Respiratory Epithelium in a Viral Species-

and Cell Type-Dependent Manner. J Virol. 2006:1629–1636. https://doi.org/10.1128/JVI.80.4.1629-

1636.2006 PMID: 16439519

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011167 March 8, 2023 17 / 22

https://doi.org/10.3390/v12101171
https://doi.org/10.3390/v12101171
http://www.ncbi.nlm.nih.gov/pubmed/33081322
https://doi.org/10.1016/j.chom.2014.06.005
https://doi.org/10.1016/j.chom.2014.06.005
http://www.ncbi.nlm.nih.gov/pubmed/25011108
https://doi.org/10.1086/598483
http://www.ncbi.nlm.nih.gov/pubmed/19392624
https://doi.org/10.1128/IAI.66.3.912-922.1998
http://www.ncbi.nlm.nih.gov/pubmed/9488375
https://doi.org/10.1038/s41467-020-18450-4
http://www.ncbi.nlm.nih.gov/pubmed/32943637
https://doi.org/10.1093/infdis/jix509
http://www.ncbi.nlm.nih.gov/pubmed/29325138
https://doi.org/10.1098/rsif.2021.0153
http://www.ncbi.nlm.nih.gov/pubmed/34129794
https://doi.org/10.1371/journal.ppat.1008109
http://www.ncbi.nlm.nih.gov/pubmed/31856206
https://doi.org/10.1038/s41598-020-66748-6
http://www.ncbi.nlm.nih.gov/pubmed/32581261
https://doi.org/10.1038/mi.2015.35
http://www.ncbi.nlm.nih.gov/pubmed/25921341
https://doi.org/10.3201/eid2511.190157
http://www.ncbi.nlm.nih.gov/pubmed/31625844
https://doi.org/10.1002/path.4638
https://doi.org/10.1002/path.4638
http://www.ncbi.nlm.nih.gov/pubmed/26383585
https://doi.org/10.1038/s41598-021-00211-y
http://www.ncbi.nlm.nih.gov/pubmed/34663857
https://doi.org/10.1038/s41467-019-10814-9
http://www.ncbi.nlm.nih.gov/pubmed/31278315
https://doi.org/10.1128/JVI.80.4.1629-1636.2006
https://doi.org/10.1128/JVI.80.4.1629-1636.2006
http://www.ncbi.nlm.nih.gov/pubmed/16439519
https://doi.org/10.1371/journal.ppat.1011167


27. Bosch AATM, Biesbroek G, Trzcinski K, Sanders EAM, Bogaert D. Viral and bacterial interactions in

the upper respiratory tract. PLoS Pathog. 2013; 9:e1003057. https://doi.org/10.1371/journal.ppat.

1003057 PMID: 23326226
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