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A B S T R A C T   

Background and objectives: COVID-19-associated coagulopathy, shown to increase the risk for the occurrence of 
thromboses and microthromboses, displays phenotypic features of the antiphospholipid syndrome (APS), a 
prototype antibody-mediated autoimmune disease. Several groups have reported elevated levels of criteria and 
non-criteria antiphospholipid antibodies (aPL), assumed to cause APS, during acute or post-acute COVID-19. 
However, disease heterogeneity of COVID-19 is accompanied by heterogeneity in molecular signatures, including 
aberrant cytokine profiles and an increased occurrence of autoantibodies. Moreover, little is known about the 
association between autoantibodies and the clinical events. Here, we first aim to characterise the anti-
phospholipid antibody, anti-SARS-CoV-2 antibody, and the cytokine profiles in a diverse collective of COVID-19 
patients (disease severity: asymptomatic to intensive care), using vaccinated individuals and influenza patients as 
comparisons. We then aim to assess whether the presence of aPL in COVID-19 is associated with an increased 
incidence of thrombotic events in COVID-19. 

Abbreviations: AC, anticoagulation; AIC, Akaike information criterion; AnV, annexin V; aPL, antiphospholipid antibody; APS, antiphospholipid syndrome; AUC, 
area under the curve; ARDS, acute respiratory distress syndrome; β2GPI, β2-glycoprotein I; CI95%, 95% confidence interval; COVID-19, coronavirus disease 2019; 
CL, cardiolipin; CrI95%, 95% credible interval; CSS, cytokine storm syndrome; DPO, Day post onset of symptoms; ELISA, enzyme-linked immunosorbent assay; G- 
CSF, granulocyte colony-stimulating factor; GLM, general linearised model; GM-CSF, granulocyte-macrophage colony-stimulating factor; IgM, immunoglobulin M; 
IgG, immunoglobulin G; IgA, immunoglobulin A; IFN, interferon; IFN-α, interferon-α; IFN-γ, interferon-γ; IL, interleukin; IL-1β, interleukin-1β; IL-4, interleukin-4; IL- 
6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10; IL-17 A, interleukin-17 A; IP-10, IFN-γ-induced protein 10; IQR, interquartile range; LASSO, least absolute 
shrinkage and selection operator; LIA, line immunoassay; MARS, multivariable adaptive regression spline; Mφ, macrophage; MIP-1α, macrophage inflammatory 
protein-1α; MIP-1β, macrophage inflammatory protein-1β; NC SARS-CoV-2, nucleocapsid; OD, optical density; p(EC50), -log10(EC50), the concentration at which half- 
maximum saturation is achieved; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; 
PS, phosphatidylserine; PT, prothrombin; PAI, platelet aggregation inhibitor; PCA, principal component analysis; RBD SARS-CoV-2, receptor-binding domain; ROC 
curve, receiver operating characteristic curve; RT, room temperature; S100A8/A9, calprotectin; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; SDF- 
1α, stromal cell-derived factor-1α; Spike SARS-CoV-2, spike ectodomain; Th1, type 1 T helper cell; Th2, type 2 T helper cell; Th17, type 17 T helper cell; TMB, 
tetramethylbenzidine; TNF-α, tumour necrosis factor-α; TRABI, tripartite automated blood immunoassay. 
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Methods and results: We conducted anti-SARS-CoV-2 IgG and IgA microELISA and IgG, IgA, and IgM anti-
phospholipid line immunoassay (LIA) against 10 criteria and non-criteria antigens in 155 plasma samples of 124 
individuals, and we measured 16 cytokines and chemokines in 112 plasma samples. We additionally employed 
clinical and demographic parameters to conduct multivariable regression analyses within multiple paradigms. In 
line with recent results, we find that IgM autoantibodies against annexin V (AnV), β2-glycoprotein I (β2GPI), and 
prothrombin (PT) are enriched upon infection with SARS-CoV-2. There was no evidence for seroconversion from 
IgM to IgG or IgA. PT, β2GPI, and AnV IgM as well as cardiolipin (CL) IgG antiphospholipid levels were 
significantly elevated in the COVID-19 but not in the influenza or control groups. They were associated pre-
dominantly with the strength of the anti-SARS-CoV-2 antibody titres and the major correlate for thromboses was 
SARS-CoV-2 disease severity. 
Conclusion: While we have recapitulated previous findings, we conclude that the presence of the aPL, most 
notably PT, β2GPI, AnV IgM, and CL IgG in COVID-19 are not associated with a higher incidence of thrombotic 
events.   

1. Introduction 

The prothrombotic phenotype observed predominantly in severe 
COVID-19, manifesting with venous thromboembolism, arterial occlu-
sions, and diffuse coagulopathies, has been linked with APS, charac-
terised by circulating aPL [1]. Over time, evidence that disturbances in 
the endothelial vasculature, a hyper-inflammatory immune response, 
and a state of hypercoagulability [2,3] are attributed to infection with 
SARS-CoV-2 has consolidated [4–8]. Some of the manifestations have 
been linked with the occurrence of symptoms post COVID-19 [9–12]. On 
the molecular level, a plethora of autoantibodies have been associated 
with acute or post-acute COVID-19 [1,13–17], of which few may be 
pathogenically relevant, including aPL [18–25]. While some have 
speculated whether the occurrence of aPL may be the link to hyperco-
agulability [26], some suggested that the thromboembolic features, 
including disseminated intravascular coagulation, triggered by infection 
with SARS-CoV-2 represented a secondary APS [27]. However, there has 
been little to no evidence that SARS-CoV-2 infection or its associated 
disease, COVID-19, can induce catastrophic APS [28] as the occurrence 
of aPL has not been sufficiently studied in the context of thrombotic 
events. 

Here, in a heterogeneous cohort of 124 mixed-severity patients with 
multiple trajectories, we have generated a deep molecular profiling of 
factors associated with coagulation, including a panel of ten aPL 
assessed for three immunoglobulin isotypes, 16 inflammatory mediators 
(including cytokines and chemokines), and anti-SARS-CoV-2 antibodies. 
Importantly, we have included much needed control groups (which are 
often missing [29,30]), i.e., patients with acute infection with influenza 
and individuals after anti-SARS-CoV-2 mRNA vaccination, to con-
textualise and compare these results, as infections in general are known 
to trigger flares of autoimmune disease [31,32]. We found that IgM 
autoantibodies against AnV, β2GPI, and PT are enriched upon infection 
with SARS-CoV-2. There was no strong supportive evidence for sero-
conversion from IgM to IgG or IgA. PT, β2GPI, and AnV IgM as well as CL 
IgG antiphospholipid levels, significantly elevated in the COVID-19 but 
not in the influenza or control groups, were associated predominantly 
with the strength of the anti-SARS-CoV-2 antibody titres. Moreover, the 
major correlate for thromboses was SARS-CoV-2 disease severity. 
Overall, we conclude that while we observe a significant enrichment of 
aPL during acute and post-acute COVID-19, there is no evidence that 
COVID-19-associated aPL are responsible for the increased thrombotic 

burden. 

2. Material and methods 

2.1. Study design and participants 

For this study, we included 124 patients (median age 58.0 (inter-
quartile range (IQR): 39.0–69.0) years; distribution of female-male sex 
0.444:0.556, see Table 1) admitted to the University Hospital Zurich, 
Zurich, Switzerland, from which we obtained 155 residual pre-omicron 
heparin plasma samples. Several patients (n = 49) had previously been 
included in another study where antibody affinity against multiple 
SARS-CoV-2 RBD variants of concern (VOC) was investigated post 
infection or vaccination [33,34]. Other patients (n = 37, whereof 23 
patients contributed two samples, i.e. total samples = 60) have been part 
of a study focused on superinfections in patients admitted to intensive 
care [35,36]; they are currently being investigated in the frame of a 
large multicentric collective to detail the anti-SARS-CoV-2 antibody 
kinetics in various biospecimens, alongside cytokines, upper and lower 
respiratory tract microbiota, and viral load. Furthermore, n = 8 critically 
ill influenza patients (with two samples each) requiring intensive care 
have previously been part of a study investigating influenza [37] and 
their samples have been reused in the current framework to investigate 
aPL in two cohorts of acute-respiratory distress syndrome (ARDS) of 
different viral origins. For aPL-related analyses, to build a baseline, we 
have included 30 prepandemic individuals, complementing two other 
patients who have never contracted SARS-CoV-2 nor received a vacci-
nation against SARS-CoV-2 at the time of sample donation (see Table 1). 
The samples of these patients, originally enrolled in multiple distinct 
studies, have therefore been ‘further used’ in the current study for the 
purpose of assessing the connection between the occurrence of aPL and 
the risk of experiencing thrombotic events. Moreover, for comparison, 
we have employed a dataset we had previously published [18]. The 
workflow of the study is depicted in Fig. 1A. 

2.2. Ethics statement 

All experiments and analyses involving samples from human donors 
were conducted with the approval of the ethics committee of the canton 
Zurich (KEK Zürich), Switzerland (KEK-ZH-Nr. 2015–0561, BASEC-Nr. 
2018–01042, BASEC-Nr. 2020–01731, and BASEC-Nr. 2020-00646), in 

Table 1 
Cohort characteristics.   

Influenza Non-infected/non- 
vaccinated 

Infected/non- 
vaccinated 

Non-infected/ 
vaccinated 

Infected/ 
vaccinated 

Overall 

Individuals, number 8 32 46 24 14 124 
Samples, number 16 32 69 24 14 155 
Median age (IQR) 54.5 (49.2 to 60.5) 28.5 (25.8 to 39.2) 62.5 (53.2 to 68.8) 67.0 (56.8 to 77.5) 73.5 (49.5 to 83.8) 58.0 (39.0 to 69.0) 
Sex, female 4 (50.0%) 19 (59.4%) 16 (34.8%) 10 (41.7%) 6 (42.9%) 55 (44.4%)  
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accordance with the provisions of the Declaration of Helsinki and the 
Good Clinical Practice guidelines of the International Conference on 
Harmonisation. All subjects enrolled in the study signed the hospital- 
wide General Consent of the University Hospital Zurich, Switzerland 
and/or provided written Informed Consent [30]. 

2.3. High-throughput TRABI ELISA 

Serological ELISAs were carried out using the tripartite automated 
blood immunoassay (TRABI) technology, as previously described 
[18,30,33] with minor adjustments. High-binding 1536-well plates 
(Perkin-Elmer; SpectraPlate 1536 HB) were coated with 3 μl of 1 μg/ml 
wildtype SARS-CoV-2 spike ectodomain (Spike), receptor-binding 
domain (RBD), or nucleocapsid (NC) protein in PBS using Fritz Gyger 
Certus Flex, incubated at 37 ◦C for 1 h in a ThermoFisher rotating plate 
incubator, and washed three times with PBS 0.1% Tween-20 (PBS-T) 
using Biotek El406. Plates were blocked with 10 μl of 5% milk in PBS-T 
for 1.5 h using Biotek Multiflo FX peristaltic dispensing technology. 
Samples inactivated with 1% Triton X-100 and 1% tributyl phosphate 
were diluted in sample buffer (1% milk in PBS-T), and a serial dilution 
(range: 0.02 to 1.6 × 10-4) was carried out (volume: 3 μl per well) on an 
ECHO 555 acoustic dispenser (Labcyte) using contactless ultrasound 
nanodispensing. After the sample incubation for 2 h at RT, the wells 
were washed five times with wash buffer, and the presence of anti-
–SARS-CoV-2 antibodies was detected using horseradish peroxidase 
(HRP)-linked antibodies (1. anti-human IgG antibody: Peroxidase Affi-
niPure Goat Anti-Human IgG, Fcγ Fragment Specific; Jackson; 109-035- 
098 at 1:4000 dilution. 2. anti-human IgA antibody: Goat Anti-Human 
IgA Heavy Chain Secondary Antibody, HRP; Thermo Fisher Scientific; 
31417 at 1:750 dilution), all of them diluted in sample buffer at 3 μl per 
well dispensed on Biotek Multiflo FX. The incubation of the secondary 
antibody for 1 h at RT was followed by three washes with PBS-T, the 
addition of 3 μl per well of Tetramethylbenzidine (TMB) substrate so-
lution with a Fritz Gyger Certus Flex dispenser, incubation of 3 min at 
RT, and the addition of 3 μl per well 0.5 M H2SO4 using Fritz Gyger 
Certus Flex. The plates were centrifuged in the Agilent automated 
microplate centrifuge after all dispensing steps, except for the addition 
of TMB. The absorbance at 450 nm was measured in a plate reader 
(Perkin-Elmer; EnVision), and the inflection points of the sigmoidal 
binding curves [i.e., the p(EC50) values of the respective sample dilution; 
p(EC50) is the negative logarithm of one-half the maximal concentration 
(EC50)] were determined using a custom-designed fitting algorithm 
[30], with plateau and baseline inferred from the respective positive and 
negative controls in a plate-wise manner. Negative p(EC50) values, 
reflecting nonreactive samples, were rescaled as zero. 

2.4. Measurement of autoantibodies against criteria and non-criteria 
phospholipid and phospholipid-related antigens 

Line immunoassays (LIA; GA Generic Assays GmbH, Dahlewitz, 
Germany) for the detection of criteria and non-criteria aPL were used as 
previously described [18,38,39]. Briefly, plasma samples were analysed 
for IgG, IgA, and IgM against cardiolipin (CL), phosphatidic acid (PA), 
phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphati-
dylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS), 
annexin V (AnV), β2-glycoprotein I (β2GPI), and prothrombin (PT), 

according to the manufacturer’s recommendations. Diluted samples 
(1:33, in 10 mM TRIS with 0.1% Tween-20) were transferred onto LIA 
stripes, incubated for 30 min at room temperature (RT) while shaking. A 
20 min wash step with 1 ml wash buffer (10 mM TRIS with 0.1% Tween- 
20) was used to remove unbound or loosely attached unspecific com-
ponents from the LIA stripes. HRP-conjugated anti-human IgM, IgA, or 
IgG were incubated for 15 min at RT to bind to autoantibodies. After a 
subsequent wash step, 500 μl of TMB were added to each LIA stripes as a 
substrate followed by drying the stripes for at least 30 min at RT. Optical 
density (OD) of processed strips were analysed densitometrically using a 
scanner and the corresponding evaluation software, Dr. Dot Line 
Analyzer (GA Generic Assays GmbH, Dahlewitz, Germany) with a 
grayscale calibration card for standardization provided with the kit. We 
have not used a binarization of the data into ‘positive’ or ‘negative’, 
according to a certain threshold, but looked at the distributions of ODs. 

2.5. Cytokine measurements 

Plasma cytokine levels were assessed using the Luminex MAGPIX 
instrument (ThermoFisher). Samples were thawed on ice and prepared 
according to the manufacturer’s instructions using a custom-made 16- 
plex human cytokine panel (Procartaplex ThermoFisher), as shown 
[36]. In brief, Luminex magnetic beads were added to the 96-well plate 
placed on a magnetic holder and incubated for 2 min. The plate was 
washed twice with assay buffer for 30 s. In parallel, provided standards 
and plasma samples were diluted in assay buffer and added to the plate. 
The plate was incubated for 2 h at RT at 550 rpm in a plate orbital 
shaker. Next, the plate was washed twice with assay buffer and incu-
bated for 30 min at 550 rpm with detection antibodies. After two 
washing steps, the plate was incubated with Streptavidin-PE solution for 
30 min at 550 rpm. Finally, the plate was washed, reading buffer was 
added and incubated for 10 min at RT and 550 rpm before running the 
plate. Data acquisition and analysis were performed using the Xponent 
software (v. 4.3). Data were validated using the Procarta plex analyst 
software (ThermoFisher). The inflammatory index was calculated by (1) 
normalising the cytokine concentrations (z-score) and (2) by building 
the sum of the respective z-scores in a sample-wise fashion, thereby 
deriving a composite metric, as previously done [36]. Here, for the 
calculation of the inflammatory index, we used an independent dataset 
of 467 plasma samples of COVID-19 patients admitted to ICU, 50 plasma 
samples of patients with multiple trajectories (with or without history of 
infection with SARS-CoV-2, with or without SARS-CoV-2 mRNA vacci-
nation, whose anti-SARS-CoV-2 immunoglobulin affinities have been 
characterised recently [33]), 16 samples of influenza patients with 
ARDS, and 24 plasma samples of patients admitted to ICU owing to 
severe burn injuries. Thus, the samples characterised in the frame of the 
current study represent a subset of the total on which the score was 
calculated. It is important to take note that for few (<5) patients with 
two timepoints but only one cytokine measurement, the cytokine mea-
surement was reflected in both samples, i.e. duplicated. We aimed to 
avoid as many NA entries as possible as these interfere with subsequent 
analyses and models. 

2.6. Collection of clinical parameters 

Clinical parameters were collected using two in-hospital electronic 

Fig. 1. Study design, experimental approach, and data exploration. A. Study design and experimental approach. B-D. aPL, SARS-CoV-2 antibody, and cytokine 
heatmap (B), ridge plots to display the density distribution (C), and maximum variability projection in two dimensions using principal component analysis (D). Dark 
blue: influenza group. Yellow: non-infected/non-vaccinated. Grey: infected/non-vaccinated. Red: non-infected/vaccinated. Light blue: infected vaccinated. Within 
the heatmap, missing values (NA) are displayed in grey colour. E. Left triangle: Correlogram of all features. The Spearman regression coefficient is shown. Red 
asterisks indicate significance level; one asterisk indicates p-value <0.01, and each additional one denotes a log10 decrease. Right triangle: Choleski decomposition of 
square correlation matrix to assess collinearity of features within dataset. The diagonal indicates that almost all features contained in the dataset are non-collinear 
(while being correlated), except for AC, PAI, anti-SARS-CoV-2 antibodies, disease severity, PC1 IgG and PC1 IgA. PAI: platelet aggregation inhibitor. AC: anti-
coagulation. TRABI: tripartite automated blood immunoassay. DPO: days post onset of symptoms. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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medical records databases, which included KISIM Version 5.0 (Cistec 
AG, Zurich, Switzerland) and Patient Data Management System (PDMS) 
MetaVision Version 6.1 (iMDsoft, Duesseldorf, Germany). 

2.7. Quantification and statistical analysis 

2.7.1. General statistical approaches 
We display the actual p-values in the figures, regardless of whether 

the numbers are considered statistically significant or not (unless legi-
bility in the figures is compromised) and indicate in the legend whether 
the values are corrected for multiple comparisons. Whenever indicated, 
p-values have been adjusted for multiple comparisons using Benjamini- 
Hochberg correction after conducting Wilcoxon rank sum tests on 
parametric as well as on non-parametric data. When reporting the me-
dian, we also document the interquartile ranges (IQR). Mean values are 
shown together with the standard deviation. For regression analyses, we 
document the 95% confidence interval (CI95%) for conventional 
frequentist-based regression and the 95% credible interval (CrI95%) for 
Bayesian regression. When conducting ordinary linear regression, the 
Spearman correlation coefficient R is shown. Throughout this study, the 
threshold value for significance, α, is 0.01. However, the authors believe 
that hunting for significant p-values is counterproductive and partly 
responsible for the reproducibility crisis [40–43] and cannot compen-
sate for assessing contextual and general biomedical relevance [40–46]. 
With this in mind, we have usually aimed to investigate the same 
problem from multiple viewpoints and have subsequently challenged 
our findings, to increase the stringency of our analyses. Additionally, in 
our analyses, although some variables may show a statistical effect, the 
threshold for them to be considered valid contributors to a phenotype is 
high as we require to observe strong evidence. In doing so, we avoid the 
overinterpretation of cohort-restricted small effects, since we look for 
relevant and generalisable effects. All analyses were conducted in R 
4.2.2. Statistical testing was performed using the ggpubr package [44] 
and visualisations were performed almost exclusively with ggplot2 [45]. 
Principal component analysis (PCA) and hierarchical clustering were 
conducted as shown [30,33]. When modelling data (shown below in 
Sections 2.7.2 and 2.7.3), we have refrained from employing a training 
and validation data set. Rather, we have trained the model on the entire 
data set to get the maximum precision from the given data – the pa-
rameters that went into the model had already been identified using 
multiple different approaches. 

2.7.2. Feature selection of normally distributed outcome variables 
Out of many molecular (e.g., IL-8), clinical (e.g., immunosuppres-

sion), and demographic (e.g., sex) parameters, we aim to identify those 
that correlate with our outcome variables. In one case, the outcome 
variable is an aPL value (e.g. PT IgM), which is based on a numeric scale 
from 0 to any natural number. The outcome variable here, therefore, is 
continuous and a conventional Gaussian general linearised model (GLM) 
can be employed to conduct multiple linear regression analysis. For 
feature selection, we have utilised random forest regression wrapped in 
Boruta [46] on Gaussian distributed data. We (1) run the Boruta algo-
rithm for each outcome variable using all data and (2) used a dataset 
where we excluded aPL values ≤1, to strengthen the identification of 
correlates of positivity. We then (3) compiled a list of all features 
considered important predictors according to Boruta, for each respective 
aPL, and (4) built a multivariable linear regression model in the form of 

Y = β0 + β1X1 +…+ βnXn + ε  

where β0 is the Y intercept, βiXi the regression coefficient (i.e., slope) 
and the respective dependent variable, and ε the random error. (5) After 
this model was executed and the respective regression coefficients 
computed, we (6) additionally employed a step-AIC algorithm from the 
MASS library [47] to minimise the Akaike information criterion (AIC) by 
simplification of the model/selective removal of dependent variables, 

Xi. Next (7), we imported both modelling parameters based on the full 
model as well as the modelling parameters based on the AIC-improved 
model to predict the aPL level. We then (8) compared the observed/ 
measured aPL value with the model-predicted aPL value and (9) used an 
ordinary linear regression to assess the quality of the prediction. Note 
that we selected features using random forest regression, harnessed the 
selected features in an ordinary Gaussian GLM, and then assessed the 
predictive power of the model, i.e. the selected parameters. 

2.7.3. Feature selection of Bernoulli distributed outcome variables 
We have been interested in assessing the possibility of the occurrence 

of correlates of thrombotic events. While in particular, we aimed to test 
the hypothesis that the occurrence of aPL is associated with the occur-
rence of thromboses (independent/outcome variable), we included a 
plethora of molecular, clinical, and demographic data other than aPL as 
predictor variables (dependent variables). The outcome, for each pa-
tient, was either 0 or 1, i.e., thrombosis = no or thrombosis = yes, and 
we have therefore employed models that work with Bernoulli distribu-
tions. Our strategy, overall, was to utilise several complementary ap-
proaches for feature selection, to then focus on those features having 
highest evidence of importance, to simplify and control the model in the 
best ways possible, and to use the model for prediction, whereby the 
goodness of the chosen parameters is evaluated. Along the procedure 
and by installing complementary approaches, we have been mindful 
about the issues of overfitting [48–51]. We started (1) with an ordinary 
Gaussian GLM, i.e., a multivariable linear regression, as for the bino-
mial/Bernoulli GLM (multivariable logistic regression), the data did not 
converge. Linear and logistic regression are often interchangeable (for 
binary outcome variables) in terms of p-value outcome [52]. The first 
model, therefore, assumes the form shown in 2.7.2. The model was run 
on all data, on data where potentially collinear features have been 
removed, and on molecular data only (separately for aPL, SARS-CoV-2 
antibodies, cytokines). Additionally, a step-AIC process was included, 
to further assess the data by aiming to focus on the ensemble of highest 
predictive character. Next (2), we aimed to stabilise the framework in 
which the regression is performed by employing Bayesian multivariable 
logistic regression with STAN [53], using the rstanarm [54] interface, as 
we have shown in other studies [30,55,56]. The utilisation of an 
unregularised prior (Normal(0, 10)), which led to a lot of noise in the 
estimates, was complemented by using a Bayesian LASSO and a regu-
larised horseshoe [57] as shrinkage priors. We (3) performed a multi-
variate adaptive regression spline (MARS) analysis [58], using the earth 
package in R [59], tailored to binary outcome, as the modularity of the 
model might be suited to capture nonlinear relationships within the 
dependent variables. Ultimately, we (4) conducted a random forest 
regression with Boruta, as referred to before in Section 2.7.2. Then, we 
(5) selected the features for which the consensus to be of predictive 
importance was highest and (6) built several multivariable logistic 
regression models, in a bottom-up approach, starting with the most 
important parameter. In this bottom-up approach, we looked at the 
model parameters AIC and residual deviance, aiming to decrease both. 
Upon identifying the ‘best’ model according to AIC and residual devi-
ance, we (7) generated multiple derivative models thereof, in addition to 
the ‘best model’: an AIC-improved model, a minimal model containing 
only the two most important features, an additional model containing 
those features that are not clearly related to those part of the minimal 
model, a cytokine model, and an aPL model. (8) All these models were 
then assessed in how well they predict the outcome, by comparing the 
predicted outcomes with the observed outcomes. 

2.7.4. Code to all analyses and visualisations conducted in the frame of this 
study 

The respective code describing the entire procedures, analyses, and 
visualisations is shown in the R script. Both the code as well as the 
visualisations, aiming to make scientific methods more Findable, 
Accessible, Interoperable and Reusable (FAIR) [60] as well as to bolster 
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transparency to work against the plague of untrustworthiness quite 
prevalent in the medical field [61], are combined in an Rmarkdown file, 
deposited on Zenodo [62]. 

2.8. Key resources used in the study 

The most important resources used in the study are summarised in 
Table 2. 

3. Results 

3.1. Experimental approach, and data exploration 

Thromboses are one of the globally leading causes of mortality [63] 
and COVID-19 has shown to predispose patients to thrombotic events 
[3]. Owing to manifest similarities of COVID-19-associated coagulop-
athy with the APS, aPL have been studied in some of the affected pa-
tients and, surprisingly, detected at higher frequency during acute or 
post-acute infection [20,21,24,64]. However, a causal connection be-
tween the occurrence of aPL and an increased thrombotic or thrombo-
embolic burden has not been examined in depth. Here, we used a cohort 
of 124 individuals (31 with two samples, total number of samples =
155), with different exposures to SARS-CoV-2 and different disease 
severity, with or without vaccination (see Table 1 for population char-
acteristics). For all of them, we have characterised their immunomo-
lecular and clinical profiles to assess whether previous findings could be 

reproduced, to enhance the understanding on immunoglobulin sero-
conversion, and to investigate whether increased aPL levels might be a 
general feature post-viral infection or more specific to SARS-CoV-2. 
Moreover, we aimed to elucidate some of the molecular and clinical 
key parameters modulating aPL levels, and to identify potential corre-
lates of thrombotic events (Fig. 1A). Details on thromboembolic com-
plications are provided in Table S1 and include pulmonary embolism 
and stroke, e.g. 

First, we aimed to look at the ensemble of molecular data with 
heatmaps (Fig. 1B) and distributional ridge plots (Fig. 1C). We sorted the 
individuals into five groups: (1) Influenza patients with critical illness 
sampled before the onset of the SARS-CoV-2 pandemic (dark blue), (2) 
non-infected/non-vaccinated patients (for SARS-CoV-2, yellow), (3) 
SARS-CoV-2 infected but non-vaccinated patients (grey), (4) patients 
who had never gotten infected with SARS-CoV-2 at the time of sampling 
but have received one or several vaccinations (red), and (5) patients 
following an infection with SARS-CoV-2 who had got vaccinated (light 
blue). aPL, measured using LIA for the detection of criteria and non- 
criteria aPL [18,38,39], displayed a high proportion of low ODs (see 
Table 3). In general, IgM aPL showed an inclination towards higher 
values in some patients or patient groups, notably CL, PA, AnV, β2GPI, 
and PT (Fig. 1B and C). As supporting data in addition to aPL, we have 
characterised anti-SARS-CoV-2 Spike, RBD, and NC IgG and IgA in the 
cohort, using an approach introduced previously [30]. Patients with 
influenza or non-infected/non-vaccinated patients displayed p(EC50) 
values <2, i.e., titres reflecting an absence of reactivity, as expected 
(Fig. 1B and C, middle panel). Anti-SARS-CoV-2 NC reactivity was 
restricted to patients post infection and IgA appeared most pronounced 
in a subset of the infected/non-vaccinated group. To complement this 
molecular dataset, we assessed a panel of 16 important cytokines and 
chemokines, several of which have prothrombotic activity [65,66]. The 
z-transformed serum cytokine concentrations appeared quite heteroge-
neous, unlike the anti-SARS-CoV-2 IgG and IgA titres (Fig. 1B and C, 
right panel). 

Principal component analyses mostly confirmed the impressions 
gained before (Fig. 1D). IgG and IgA aPL formed a big cluster, and 
another one was formed by IgM, while PT IgM and β2GPI IgM clustered 
slightly apart (Fig. 1D, upper panel). Anti-RBD and anti-Spike IgG were 
almost identical and clustered together with anti-NC IgG, despite 
vaccination-only individuals having anti-Spike and anti-RBD titres 
without having anti-NC reactivity. Conversely, the anti-NC IgA profile 
contained a lot of information that was not covered with anti-RBD and 
anti-Spike IgA (Fig. 1D, middle panel). The cytokines largely clustered 
within two groups (Fig. 1D, lower panel). For aPL, anti-SARS-CoV-2 
antibodies, and for cytokines, influenza patients as well as non- 
infected/non-vaccinated control patients typically clustered apart from 
the rest. Non-infected/vaccinated and infected/vaccinated usually fell 
in between, while infected/non-vaccinated individuals distributed non- 
focally, with opposite directionality. 

As part of the first step in data exploration, we aimed to gain an 
understanding on the overall correlation contained within the parame-
ters in our dataset, including the available clinical parameters for this 
study. We therefore plotted the Spearman correlation of all features 
(Fig. 1E, left triangle). Globally, we observed an extensive correlation 
within the same groups, e.g., IgG aPL correlated relatively well within 

Table 2 
Key resources used in this study.  

Reagent or resource Source Identifier 

Antibodies 
Goat anti-human IgG 

(1:4000 ELISA) 
Jackson 109-035-098; RRID: 

AB_2337586 
Goat anti-human IgA 

(1:750 ELISA) 
Thermo Fisher 
Scientific 31417; RRID: AB_228253 

Anti-human IgG (LIA) 
GA Generic Assays 
GmbH 

N/A 

Anti-human IgM (LIA) GA Generic Assays 
GmbH 

N/A 

Anti-human IgA (LIA) GA Generic Assays 
GmbH 

N/A  

Biological samples 
Zurich COVID-19 ICU 

cohort  N/A 

Zurich COVID-19 
affinity cohort  

N/A 

Healthy blood donors  N/A  

Chemicals, Peptides, and Recombinant Proteins 
WT SARS-CoV-2 Spike 

ECD 
Introduced here 
[30] 

https://doi.org/10.1016/j. 
isci.2023.105928 

WT SARS-CoV-2 RBD 
Introduced here 
[30] 

https://doi.org/10.1016/j. 
isci.2023.105928 

WT SARS-CoV-2 NC AcroBiosystems NUN-C5227  

Critical commercial assays 
Procartaplex ThermoFisher N/A 

aPL LIA 
GA Generic Assays 
GmbH N/A  

Software and algorithms 
R 4.2.2 statistical 

software R Core Team N/A 

R Studio 2022.07.1 
Build 554 

R Studio, PBC N/A 

Stan Stan development 
team 

N/A 

Code deployed for this 
study 

Zenodo repository 
[62] 

Doi: https://zenodo.org/doi/ 
10.5281/zenodo.10051978  

Table 3 
Summary statistics aPL measurements.   

IgA IgG IgM Overall 

Measurements, 
number 

1410 1550 1550 4510 

Mean (STDEV) 8.1 (10.9) 2.4 (7.2) 9.4 (17.7) 6.6 (13.1) 

Median (IQR) 
5.0 (3.0 to 
10.0) 

0.0 (0.0 to 
0.0) 

0.0 (0.0 to 
16.0) 

0.0 (0.0 to 
7.0) 

Range 0 to 121 0 to 89 0 to 101 0 to 121  
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the group, while correlation outside the group was limited, and the same 
held true for almost all variables. We thus aimed to identify the excep-
tions: Thromboses correlated positively with anti-NC IgG and anti-Spike 
IgA, the linear combination of anti-SARS-CoV-2 IgG (termed PC1 IgG, 
see [18]), IL-6, acute infection, and mostly with disease severity; 
negative correlation with vaccination status manifested. Anti-SARS- 
CoV-2 antibodies, except anti-NC IgA, were positively correlated with 
IgM to AnV, β2GPI, and PT. These three aPL were moreover positively 
correlated with IL-17 A, TNF-α, acute infection, and with disease 
severity. As we will subsequently use these parameters in multivariable 
regression models, we aimed to identify collinear features. We therefore 
conducted a Choleski decomposition on the correlation matrix using the 
Hermitian positive-definite matrix to identify features whose values 
approximate 0 (Fig. 1E, right triangle). We found that AC, PAI, anti- 
SARS-CoV-2 antibodies, and disease severity are partly collinear with 
other variables. PC1 IgG and PC1 IgA are markedly collinear, as ex-
pected. Collinearity can be a confounder in regression models and will 
be adequately addressed in subsequent chapters. 

3.2. Investigation of cytokine profiles reveals differences between COVID- 
19 and influenza patients during acute infection 

We have observed in Fig. 1C and D that the cytokine fingerprint in 
influenza patients appeared different from the rest, with low MIP-1α, 
MIP-1β, S100A8/A9, SDF-1α, TNF-α values, which was also reflected in 
a low inflammatory index, a compound metric recently introduced in 
the frame of COVID-19 [35,36]. Using all cytokine data available, we 
performed unsupervised hierarchical clustering on patients with an 
acute infection, i.e., with influenza or SARS-CoV-2, and colour-coded 
three groups: (1) Patients with influenza (dark blue), (2) infected but 
non-vaccinated patients (grey), (3) patients with infection and post 
vaccination (light blue). The result was in good agreement with the 
observation from the heatmap (Fig. 1B): while not being perfectly 
separated, the three groups formed distinct clusters (Fig. 2A). We then 
subjected the cytokines to hierarchical clustering, using three colour- 
coded readouts, differentiating (1, green-yellow colours) pro- and anti- 
inflammatory functionality, (2, purple colours) Th1, Th2, and Th17 
groups, and (3, blue-orange colours) chemokines. Pro-inflammatory 
cytokines and chemokines like IL-6, GM-CSF, IL-17 A, TNF-α, IL-8, and 
SDF-1α preferentially clustered together, while anti-inflammatory mol-
ecules like G-CSF, IL-10, or IL-4, and others with mixed effect (IFN-γ) did 
not form clear clusters (Fig. 2B). These analyses are suggestive that 
infection with influenza or SARS-CoV-2 lead to a differential cytokine 
release. Indeed, when statistically testing differences among the groups 
with patients suffering from an acute infection, for each of the cytokines 
as well as the inflammatory index, we identified significant differences 
only between non-vaccinated/vaccinated COVID-19 patients and influ-
enza but not within COVID-19 patients (Fig. 2C), except for IL-4. 
S100A8/A9, SDF-1α, MIP-1β, MIP-1α, and the inflammatory index 
were significantly different from influenza, independent of the vacci-
nation status (Wilcoxon rank sum test with Benjamini-Hochberg 
correction for multiple comparisons). Overall, we observed that the 
cytokine profiles remain relatively constant over time (Fig. 2D), indi-
cating that the exact time of sample collection is likely not a principal 

influence on the value measured. In a next step, we aimed to con-
textualise our results in comparison to previously published studies and 
datasets. We found four studies containing cytokine profiles of healthy 
individuals, COVID-19, influenza, and cytokine storm syndrome (CSS) 
patients. Three of them were used for subsequent comparison [67–69] 
and one was disregarded [70] as it only contained median and not mean 
concentration values. Additionally, we included our present dataset and 
data from an unpublished multicentre study conducted in ICU patients 
(see Table S2). Our main conclusions were that data from these mixed 
datasets were generally comparable, except for the cytokine profile of 
influenza patients which showed differences to ours in multiple in-
stances (Fig. 2E). 

3.3. Confirmation of key findings from previous study with new dataset 

As we had conducted a multicentre study where we investigated the 
prevalence and association of aPL [18], we aimed to (1) challenge our 
previous results with the present cohort and (2) aimed to add to the 
previous study by detailing some aspects we had not been able to before. 
To enable a comparison, here, we restricted this first analysis to two 
patient groups: (1) non-infected/non-vaccinated (‘no history of infection 
with SARS-CoV-2 or with vaccination against it until the time of sample 
donation’), and (2) infected/non-vaccinated, to exclude a potential bias 
induced by vaccination. As in the previous study, aPL IgA were not 
measured, we have not included information on IgA in this chapter. 

Both female and male participants in the new and old cohorts 
showed a comparable age profile (p-values = 0.1 and 0.89, respectively, 
Wilcoxon rank sum test, Fig. 3A), and the female:male ratios were 
0.449:0.551 in the new and 0411:0.589 in the old cohorts (Table 4). The 
temporal variability in sampling was much more pronounced in this new 
cohort, with sampling being done at the day of onset of symptoms until 
>200 days post onset of symptoms (DPO), and significantly differed 
from the old cohort (p-value = 1.8 × 10-8, Wilcoxon rank sum test, 
Fig. 3B). The composition of the cohort also differed regarding disease 
severity: while in the previous dataset, all severity categories (from ‘no 
disease’ to ‘intensive care treatment’) were covered to a similar extent, 
we observed a tendency towards no disease and most severe disease 
(Fig. 3C), with very few individuals who experienced mild-moderate 
COVID-19. When looking at the overall distributions of IgG and IgM 
aPL (Fig. 3D), we noticed that both in the new and old cohorts, the 
distributions of the non-infected/non-vaccinated and the infected/non- 
vaccinated differed significantly, except for IgM in the old cohort. We 
thus concluded that the current and previous cohorts differ in some 
important parameters. 

We then aimed to investigate whether the key finding from the 
recent cohort, i.e., that PT in particular, but also β2GPI and AnV IgM, but 
not IgG, were enriched in infected versus non-infected individuals [18], 
could be reproduced. While in the former study, we first conducted a 
Fisher’s exact test (where all three antigens had higher IgM levels in the 
infected group) and then looked at the entire distribution (where only 
PT and β2GPI but not AnV showed significant differences), we here 
directly compared the distributions using Wilcoxon rank sum test with 
Benjamini-Hochberg correction for multiple comparisons (Fig. 3E). As 
was the case in the previous dataset, PT and AnV IgG did not 

Fig. 2. Additional analyses performed on cytokines. A. Hierarchical clustering was performed on the cytokine data of patients with acute influenza or acute SARS- 
CoV-2 infection. Shown is the dendrogram for patients and the colour-coded groups. B. The same hierarchical clustering as in (A) was performed, with the 
dendrogram showing the cytokines, with colour-codes for three groups: Group 1: Chemokine, key pro-inflammatory, key anti-inflammatory, rest, compound (in-
flammatory index). Group 2: Th1, Th2, Th17, Th1/2, Th1/17, compound. Group 3: Pro-inflammatory, anti-inflammatory, anti- and pro-inflammatory, Mφ and T cell 
recruitment, compound. C. Group-wise comparisons of cytokine plasma concentration. The individual measurements are indicated as dots, which are shown together 
with a conventional boxplot. Wilcoxon rank sum test with Benjamini-Hochberg correction for multiple comparisons was conducted and statistically significant 
changes are indicated in the figure. D. Same as in (C) but the cytokine plasma concentration is plotted against the time (day) at which the sample was collected post 
onset of symptoms (DPO). E. Using data from the current study as well as from an unpublished multicentric study on ICU COVID-19 patients and using data from 
literature [67–69], we compare cytokine levels in healthy controls, COVID-19 patients, influenza patients, vaccinated but non-infected controls, and in patients with 
primary CSS. A single dot reflects the mean concentration from a dataset (one study can contain multiple datasets for the same patient groups, see Table S2), which is 
displayed together with the standard deviation. If more than one mean value from one study is shown, a boxplot is displayed. 
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Fig. 3. Comparisons of finding between current and previous dataset. A. Comparison of age and sex between the previous study (‘old’) and current dataset (‘new’). B. 
Comparison of day post onset of first SARS-CoV-2 symptoms (DPO) between previous study and current dataset. C. Comparison of COVID-19 disease severity between 
previous study and current dataset. D. Assessment of differences between SARS-CoV-2 infected and SARS-CoV-2 non-infected individuals regarding IgM and IgG aPL 
levels in previous study and current dataset. E. The same assessment as in (D), focusing on selected aPL that have shown distributional differences between infected 
and non-infected in the previous study. Wilcoxon rank sum test with Benjamini-Hochberg correction for multiple comparisons was conducted to test for distributional 
differences. 
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significantly differ between infected and non-infected groups. Yet, 
β2GPI IgG was statistically different in the new dataset. We observed 
higher IgM levels for PT β2GPI, and AnV in the new cohort (p-values 
between 0.0034 and 8.8e-7). We therefore concluded that while the re-
sults were not fully congruent with the old dataset (as can be seen in 
Fig. 3E), the trend was reproduced. Even more importantly, PT IgM, 
which we focused on in the previous study, reproduced nicely, despite 
the differences in the cohorts used. 

3.4. No evidence for seroconversion from IgM antibodies to IgA or IgG 

One critique levied in the frame of our previous study [18] concerned 
the result that higher levels of IgM aPL, but not specifically of IgG aPL 
were identified. Covering a much wider range of DPOs (Fig. 3B) and 
additionally including IgA aPL, we aimed to reassess seroconversion and 
whether the occurrence of these IgM aPL antibodies are of transient 
nature. First, we were interested whether the overall IgA, IgG, or IgM 
aPL distributions differ among each other (Fig. 4A). Despite being 
largely overlapping, all the distributions differed significantly (all p- 
values <0.0001); the median IgA was 5.0 (mean: 8.1), IgG 0.0 (mean: 
2.4), and IgM 0.0 (mean: 9.4), see Table 3. We then hypothesised that if 
there was seroconversion, we should observe a trend towards increased 
IgG and IgA with later DPO, and a potential decrease of IgM. We 
therefore conducted a linear regression on all data where DPO was 
available (i.e. non-infected/non-vaccinated and influenza patients were 
excluded). The Spearman correlation coefficient R was low for all Ig 
isotypes, close to 0, indicating constant titres over time (Fig. 4B). 
Conversely, this seemed to suggest the absence of seroconversion to IgA 
or IgG. As for some patients multiple time points were available, we 
decided to analyse them. A pairwise analysis indicated that mean IgA 
and IgM slightly increase at the second time point compared to the first 
one (p-values = 0.0078 and 0.00016, respectively, Wilcoxon rank sum 
test), while mean IgG slightly decreased (p-value = 0.89, see Fig. 4C), 
which did not solidify evidence for seroconversion. Lastly, we plotted 
the difference between the time points individually, for all samples, and 
modelled the behaviour using natural cubic spline functions [71,72], 
individually for all three isotypes (Fig. 4D). We used the range of the 
data as boundary knots and additionally used an internal knot at day 10, 
reflecting the 90th percentile in the data. While the spline for IgG re-
flected an approximated line, IgM and IgA displayed a slight increase 
with a peak somewhere between days 10-20, followed by a decline. Yet, 
the sum of evidence points against massive seroconversion from IgM to 
more long-lived IgG or IgA. On the other hand, IgM titres persisted over 
>200 days on the cohort level, which may hint that they are more than a 
transient phenomenon. 

3.5. Infection with SARS-CoV-2, but not vaccination or infection with 
influenza, leads to increased IgM and IgG levels for select aPL 

The post-acute-infection syndrome (PAIS), which might manifest as a 
heterogeneous group of symptoms, including fatigue, disturbed sleep, 
post-exertional malaise, and pain [11], is mechanistically understudied 
and occasionally confounded by the lack of an appropriate control group 
[29,30]. PAIS has been reported after infection with multiple viruses, 

including cytomegalovirus [73], Epstein-Barr virus [73,74], influenza 
[75], and SARS-CoV-2 [33,76,77], and their pathogenesis may be owing 
to (1) persistent, yet undetected infection triggering a chronic immune 
response, (2) autoreactive disinhibited B or T cells within the frame of 
molecular mimicry, (3) or a dysregulation of the microbiome, virome, or 
mycobiome [11]. In particular, studies conducted in the last years sug-
gested a surge in autoantibodies post COVID-19 [13–16], while other 
viral diseases have been less focused on. Here, were aimed to (1) char-
acterise the aPL profiles in a heterogeneous cohort of patients with acute 
or post-acute COVID-19, (2) compare these profiles with influenza pa-
tients, (3) and further contrast these signatures with patients without a 
history of COVID-19 but who have received one or multiple mRNA 
vaccines against SARS-CoV-2. These analyses will help us understand 
whether aPL prevalence is increased specifically after an infection with 
SARS-CoV-2, or whether infection with another virus or a vaccine elicits 
a similar autoimmune phenotype. For this to be considered relevant, the 
distributions needed to (1) have a median change from baseline (the 
non-infected/non-vaccinated group) ≥ 2, (2) have a median of ≥10, and 
(3) a p-value ≤0.01. The median change from baseline allows us to 
assess the effect of the change, rather than tiny distributional differ-
ences. The threshold of a median helps us to assess meaningful differ-
ences, rather than fluctuations close to ODs of questionable relevance. 
The p-value is derived from comparing the distributions with Wilcoxon 
rank sum test, hence, we only select differences that are statistically 
significant. 

We first analysed the entire aPL distribution per isotype (and not 
individual aPL) and observed that none of the groups displayed relevant 
changes (Fig. 5A). However, when specifically evaluating individual 
aPL, we identified considerable changes of the infected/non-vaccinated 
group for PT IgM, AnV IgM, β2GPI IgM, and CL IgG (Fig. 5B and Table 5). 
Such changes have not been evidenced for other aPL or for other patient 
groups, among them critically-ill patients suffering from influenza. This 
suggests that the signature observed here is a result of an infection with 
SARS-CoV-2. While mRNA vaccination combined with infection seem to 
diminish this signature, SARS-CoV-2 mRNA vaccination alone partially 
recapitulated the observations from the infection only group, for mul-
tiple aPL (Fig. 5B). 

3.6. Identification of key parameters modulating aPL levels 

Infection with SARS-CoV-2, and not with influenza, and to a lesser 
degree, vaccination with an mRNA vaccine, have shown to influence the 
occurrence of aPL autoantibodies in the former parts of this study. Here, 
we first plotted the respective ODs of all aPL against anti-SARS-CoV-2 
IgG and IgA PC1, grouped into isotypes, and performed a linear 
regression (Fig. 6A), to see whether they are co-dependent. The 
Spearman correlation coefficient was <0.14 in all cases, which we 
interpreted as lack of evidence for a general driving of aPL titres by the 
strength of the anti-SARS-CoV-2 antibody response. However, PT IgM, 
β2GPI IgM, AnV IgM and to a more limited extent CL IgG displayed some 
correlation with anti-SARS-CoV-2 PC1 IgG and IgA (Fig. 6B), even in the 
presence of a large number of OD = 0 values, forming a baseline. As in a 
recent study, we have revealed that IgM aPL against PT are associated 
with strength of the antibody response and are further modulated by 
COVID-19 disease severity, and sex [18,30,33], we here aimed to 
investigate potential modulators of PT, AnV, β2GPI, and CL aPL. We 
therefore conducted random forest regression with Boruta, with PT IgM, 
AnV IgM, β2GPI IgM, and CL IgG as the respective dependent variables 
and a plethora of clinical, demographic, and molecular parameters (see 
Rmarkdown file on Zenodo [62]) as independent variables. The analyses 
were performed twice, on all data points and after selecting individuals 
with OD > 1, thereby excluding OD ≤ 1. We obtained lists of the features 
considered important according to random forest regression (Table 6) 
and employed all of them in a conventional general linearized model. 
Additionally, we conducted an automated Akaike information criterion 
(AIC) improvement to simplify the model as much as possible, aiming to 

Table 4 
Comparison with previously published cohort.   

New cohort Old cohort Overall 

Individuals, number 78 90 168 
Samples, number 101 95 196 

Median age (IQR) 
53.5 (31.0 to 
65.0) 

54.0 (41.0 to 
66.0) 

54.0 (37.0 to 
65.0) 

Sex, female 35 (44.9%) 37 (41.1%) 72 (42.9%) 
Non-infected/non- 

vaccinated 
32 (41.0%) 20 (22.2%) 52 (31.0%) 

Infected/non-vaccinated 46 (59.0%) 70 (77.8%) 116 (69.0%)  
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Fig. 4. No evidence for seroconversion from IgM antibodies to IgA or IgG. A. Boxplot with individual dots representing aPL measurements performed on all aPLs, 
shown for distinct isotypes. In addition to the boxplot, the mean value of each isotype is shown in red. P-values were calculated with Wilcoxon rank sum test and and 
Benjamini-Hochberg corrected for multiple comparisons. B. Same values as in (A) for which DPO is available. Spearman correlation coefficients calculated for each 
isotype indicate no linear trend between aPL ODs and DPO. C. For patients for which two timepoints were available, we compared the first and the second timepoint, 
for each isotype, without splitting into individual aPL. Both IgA and IgM, but not IgG, displayed a tendency for increased values at the second time point. Wilcoxon 
rank sum test was conducted to test for distributional differences. D. For patients used in (C), the difference between the time points were plotted. The dashed lines 
connect the measurements from the same patient, split into individual aPL and antibody isotype. The trends are displayed by using a natural cubic spline function, 
following the same colour-code as above. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Infection with SARS-CoV-2, but not vaccination or infection with influenza, leads to increased PT, β2GPI, and AnV IgM, and CL IgG levels in the infected-only 
group. A. Comparison of all aPL isotypes, by groups. We applied the following criteria for identification of differences: (1) We only consider groups with median 
change from baseline ≥2, (2) with a median of ≥10, and (3) with p-value ≤0.01. The median change from baseline allows us to assess the effect of the change, rather 
than tiny distributional differences. When looking at all aPL together, none of the groups displayed a change according to above definition. B. Same as in (A), but the 
analysis is separated for individual aPL levels. The infected-only grouped showed relevant changes for PT, β2GPI, and AnV IgM, and CL IgG. 
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obtain the most relevant parameters. Using the full (Fig. 6C) or the AIC 
improvement model (Fig. 6D), we then predicted the respective aPL 
values, to assess the predictive quality of our model. While the uti-
lisation of the full model generally led to the best Pearson correlation 
coefficient, we observed that the AIC simplified models predicted the 
aPL ODs quite nicely, with R ≥ 0.52 in all cases. This suggested that NC 
IgG, together with MIP-1α, IL-8, and age are associated with PT IgM 
titres (Table 6). AnV IgM is associated with NC IgG, disease severity, IL- 
17 A, and age and β2GPI IgM is associated with NC IgG and IgA, SDF-1α, 
and IL-4. CL IgG is associated with PC1 IgG, Spike IgA and IgG, NC IgG, 
IL-8, SDF-1α, and age. When building a model for PT IgM with ‘immu-
nosuppression’ alone, with age only, or with sex only (Fig. 6E), any 
predictive value vanished. The predicted values for PT IgM based on the 
age model was additionally plotted against the observed values of PT 
IgA (see Fig. 6E, third panel) and unlike in all other models, the y- 
intercept β0 ∕= 0 and the slope β1 ∕= 1, as the modelled values (for IgM) 
are based on observations different from the ones shown here (IgA). 
These controls display that valid predictions do not accrue from non- 
informative parameters. Conversely, they validate that the selected 
candidates are associates of aPL reactivity. Thus, the strength of the 
antibody response against SARS-CoV-2 and particularly the IgG response 
against NC, which displays an excellent correlation with disease severity 
(see Fig. 1E), is a key modulator of the respective aPL. Additionally, 
chemokines and cytokines, notably MIP-1α, SDF-1α, IL-4 and IL-8, and 
age contribute to the effect. This result, obtained within an entirely new 
cohort, validates, and extends our previous observation [18]. 

3.7. Thrombotic events are associated with SARS-CoV-2 disease severity, 
while evidence for association with any aPL is limited 

COVID-19-associated coagulopathy entails an increased risk of 
developing thromboses and is reminiscent of the antiphospholipid syn-
drome [20,26,78,79]. As many groups have reported higher aPL levels 
in COVID-19 [21,24,25,64,80], including in this study where have 
additionally compared COVID-19 with influenza, a ‘never infected’ 
group and individuals after receiving vaccinations, it could be hypoth-
esised that thrombotic events following COVID-19 are triggered by aPL. 
As the information whether patients included in our study have devel-
oped thromboses was available, we were able to experimentally eval-
uate whether increased aPL levels, or other variables included in our 
dataset, have a higher propensity to elicit thrombotic events. However, 
the large numbers of covariates required a careful assessment. We have 
therefore used multiple modalities for the initial process of identifying 

potentially important parameters. We first employed ordinary multi-
variable linear regression on all data, on data after removing collinear 
features (see Fig. 1E, Choleski decomposition), and on aPL, SARS-CoV-2 
antibodies, and cytokines only (adjusted for age and sex) and plotted the 
exponentiated regression coefficients with 95% confidence intervals 
(CI95%), displayed in Fig. 7A. After accounting for collinearity, we 
found disease severity, anti-NC IgG anti-NC IgA as well as anti-Spike IgG 
and IgA to be fairly higher (see Table 7), also when running an AIC 
improvement (colour-coded in the plot, as detailed in the figure legend). 
While running a linear regression instead of logistic regression on data 
with binary outcome can sometimes be legitimated [52], our reason for 
doing so was the non-convergence of the fits, which resulted in a large 
uncertainty so that no reliable estimate of the regression coefficients 
could be obtained. To make regression more stable, we have employed 
multivariable logistic regression in a Bayesian framework [30,54–56]. 
Using an unregularised as well as a LASSO and a regularised horseshoe 
approach, we identified disease severity as the most important correlate 
of thrombosis (OR:2.98, CrI95%: 1.80-5.81), and additionally perhaps 
IL-6, and SDF-1α, the latter being negatively correlated (Fig. 7B and 
Table 7). The predictions of the MARS model were in good agreement as 
disease severity was ranked as the most important feature, followed by 
anti-SARS-CoV-2 antibodies and some cytokines (Fig. 7C and Table 7). 
Random forest regression with Boruta, which assesses the importance of 
each predictor variable independently rather than conducting multi-
variate regression, identified disease severity as the most associated 
parameter (Fig. 7D and Table 7) with thrombosis and additionally anti- 
SARS-CoV-2 antibodies, some cytokines (G-CSF, IL-6, IP-10, IL-4, SDF- 
1α, IL-10), and β2GPI IgM, the only aPL to appear in all these analyses. 
Based on findings of these analyses, we have then aimed to select the 
best combination of these parameters, to predict the outcome most 
accurately. Starting with those features where highest consensus was 
reached (i.e. disease severity), we added more features, one after the 
other, and assessed modelling parameters (AIC and residual deviance), 
aiming to minimise the two. This resulted in a logistic regression model 
consisting of multiple parameters (Fig. 7E), which we refined using an 
AIC improvement algorithm. Moreover, we also generated a minimal 
model where only two parameters, disease severity (largely correlated 
with anti-SARS-CoV-2 antibodies, see Fig. 7E) and NC IgA (least corre-
lated with disease severity, or with other anti-SARS-CoV-2 antibodies), 
were considered. An additional model was built accounting for param-
eters included in the best model but not included in the minimal model, 
i.e. cytokines and β2GPI IgM. In the cytokine model, we additionally 
removed β2GPI IgM and in the aPL model, we only included β2GPI IgM. 
For all models, we then compared the observations (absence or presence 
of thrombosis) with the calculated probability, i.e. the predicted values 
(Fig. 7F). The best and the AIC improved models predicted the outcome 
quite well, at 92.0 and 91.1%, respectively. When only using disease 
severity and NC IgA titres (minimal model) as parameters, we still 
predicted 83.0% of outcomes correctly. The additional model, the 
cytokine model, and the aPL model all lost predictive power, as can be 
seen when looking at the ROC curves (Fig. 7G). The aPL model is random 
(AUC: 0.522), and the additional and the cytokine models are close to 
being unusable (AUC: 0.728 and 0.729, respectively). Disease severity 
and NC IgA alone (AUC: 0.830) already have a marked predictive ca-
pacity, while the more complex models add further strength (AUC ≥
0.929). First and importantly, these results do not support that the 
occurrence of aPL are correlated with, and potentially cause, thrombo-
ses. However, the data is suggestive that disease severity and a proxy of 
it, the strength of the anti-SARS-CoV-2 antibody response, are associated 
with thromboses. Additionally, G-CSF, which is known to induce 
thrombocytopenia and IL-6, a documented risk factor for coagulopathies 
[3], display an association although by themselves, their associations 
are weak. 

Table 5 
aPL levels compared to baseline. We conducted comparisons to assess whether 
the distributions and the effects differ among the groups. We compared the 
distributions of all groups against baseline, i.e. non-infected/non-vaccinated. 
We applied the following criteria for identification of differences: (1) We only 
consider groups with median change from baseline ≥2, (2) with a median of 
≥10, and (3) with p-value ≤0.01. The median change from baseline allows us to 
assess the effect of the change, rather than tiny distributional differences. The 
threshold of a median helps us to assess meaningful differences, rather than 
fluctuations close to ODs of questionable relevance. The p-value is derived from 
comparing the distributions with Wilcoxon rank sum test, hence, we only select 
differences that reach statistical significance.  

Patient group aPL Median 
(IQR) 

Median change 
from baseline 

p-value 

Infected/non- 
vaccinated 

PT IgM 22.0 (0.0- 
35.0) 

Infinite 0.00251 

Infected/non- 
vaccinated AnV IgM 

37.0 (23.0- 
47.0) 6.73 4.3e-06 

Infected/non- 
vaccinated 

β2GPI 
IgM 

35.0 (27.0- 
48.0) 

2.00 4.4e-07 

Infected/non- 
vaccinated 

CL IgG 12.0 (0.0- 
17.0) 

Infinite 0.00013  
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Fig. 6. Identification of key parameters modulating aPL levels. A. aPL levels are not generally modulated by the strength of the antibody response against SARS-CoV- 
2 proteins, neither IgG (left) nor IgA (right). The first PC of the SARS-CoV-2 TRABI measurements are displayed. B. PT, β2GPI, and AnV IgM, but not IgG or IgA, are 
modulated by the strength of the antibody response against SARS-CoV-2 proteins, as shown previously. Additionally, CL IgG appears slightly corelated with the 
strength of the antibody response. C-E. Regression model to infer predictors of aPL levels. Features were identified using random forest regression and then used to 
model the respective aPL response. The full model behaviour (prediction versus actual observation) is shown (C), the AIC-improved model in (D), and control models 
in (E). While all models in (C) and (D) contain valuable information, the models shown in (E) display that the utilisation of non-informative parameters leads to a lack 
in predictive capacity. 
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4. Discussion 

Many of the coagulation-associated features of COVID-19 pathology, 
particularly the formation of micro- and macrothrombi, are reminiscent 
of the catastrophic APS [2,22,28]. In parallel, a large body of evidence 
supports an enrichment of aPL during acute or post-acute COVID-19 
[19–21,24–26,28,64], and total IgA and aPL-specific IgA were associ-
ated with severe illness [81]. Thus, one may speculate that the occur-
rence of aPL after infection with SARS-CoV-2 is causatively connected 
with APS-like COVID-19-associated coagulopathy. 

First, our results confirmed previous observations, including our own 
[18], as we reported a significant enrichment of both IgG and IgM aPL in 
infected (non-vaccinated) versus non-infected (non-vaccinated) in-
dividuals. When looking into the granularity of the data, we had not 
been interested in observing merely statistical fluctuations but aimed to 
identify biologically relevant effects. To this end, we have set stringent 
criteria when comparing individual aPL levels between groups. While 
observing a trend for increased aPL levels in individuals after vaccina-
tion only (in the absence of a history of infection with SARS-CoV-2), we 
identified the most notable enrichments in patients with acute or post- 
acute SARS-CoV-2 (without a history of vaccination) but not with 
acute influenza, for PT IgM, AnV IgM, β2GPI IgM, and CL IgG. While no 
other significant effect was found, PA (IgG and IgM), CL (IgM and 
potentially IgA), and PS (IgG and IgM) displayed a similar trend – for 
infected only and for vaccination only groups – and might be considered 
relevant if the cohort size was further enlarged. We interpreted this 
result as a suggestion that aPL levels are not generally elevated upon any 
viral infection but that there is some level of specificity, and that some 
but not other aPL are increased. Interestingly, this difference between 
infection with SARS-CoV-2 and with influenza was complemented by a 
distinct cytokine profile, which we have further visualised using PCA 
and hierarchical clustering. S100A8/A9, SDF-1α, MIP-1β, MIP-1α, TNF- 
α, and likely also GM-CSF displayed markedly distinct distributional 
patterns in acutely infected influenza and COVID-19 patients. They are 
all mainly produced by Th1 or Th17 T helper cells as well as by mac-
rophages and promote an inflammatory environment [82] that may 
result in an acute respiratory distress syndrome (ARDS), a core feature of 
severe COVID-19. While the classical signatures of the cytokine storm 
syndrome were largely absent in COVID-19 patients, an observation 
shared with others [68], our data is suggestive of significantly altered 
cytokine signalling in acute COVID-19 compared with acute influenza. 
However, a limitation of these comparisons among cohorts contained in 
our dataset or those from already published repositories is heterogeneity 
regarding the patients’ conditions, their treatment, the exact timing of 
sample collection, and potentially others. We have sought to express 
such potential confounders wherever indicated. 

As we observed distinct changes in IgM aPL, and less so in IgG or IgA, 
an emerging question might be whether these aPL display a propensity 

towards seroconversion. The assumption, then, would be that IgG and 
IgA increase with time, while IgM would show an inclination to waning. 
We have investigated this question from multiple angles and found no 
evidence for seroconversion from IgM to IgA or to IgG. However, when 
looking at the global dataset, the IgM levels did not drop even after >200 
DPO, which indicates that these IgM are more than a transient phe-
nomenon post infection with SARS-CoV-2. But what are the factors, 
other than infection with SARS-CoV-2, that are associated with aPL 
levels? To answer this question, we have first identified relevant features 
using a random forest and have then built a GLM, to identify and vali-
date the relevant parameters. The most salient factor was anti-SARS- 
CoV-2 NC IgG, which emerged as determinant for PT, AnV, β2GPI 
IgM, and for CL IgG, suggesting that the strength of the antibody 
response after infection with SARS-CoV-2, more than after vaccination, 
modulates these aPL. Age was an additional covariate which, in com-
bination with other parameters, showed correlation. While this confirms 
previous findings [18], the modulatory effect of various cytokines we 
had reported here would require additional validation for the evidence 
to be considered strong. In general, cytokine profiles have not been 
given much attention in the antiphospholipid field and systematic as-
sessments are lacking to date. In this regard, our dataset provided here 
will be a valuable resource to compare the cytokine (but also aPL) 
profiles in our cohorts with those of patients with primary or secondary 
APS. 

Finally, we aimed to identify correlates of thrombotic complications. 
While any parameter could be associated with it and may be identified, 
we formulated the hypothesis that – given the evidence presented above 
– the occurrence of aPL in COVID-19 is correlated with a higher inci-
dence of thromboses. While this would still not prove a mechanistic 
causation, it would make a strong case for it. However, our approach 
combining four analytic modalities failed in detecting evidence for 
correlation between aPL and thromboses in COVID-19. This could be 
because in the APS, many identified more significant correlations with 
thrombosis for the IgG than for IgM aPL, albeit a minority of studies 
reported significant associations with thrombosis for IgM but not IgG 
antibodies [83]. Moreover, it was shown in a recent report that the 
detection of IgM aPL is of added diagnostic value in obstetric but not 
thrombotic APS [84]. But are there other factors that might be predictive 
of thrombotic insults? The hypersecretion of inflammatory cytokines 
and chemokines as a result of the cytokine storm syndrome contributes 
to complement and coagulation cascade activation, to disseminated 
intravascular coagulation, and ultimately, to thrombotic complications 
[66,85]. Indeed, we identified that a pro-inflammatory signature (our 
inflammatory index), together with few other cytokines and chemokines 
like G-CSF and IL-6 may be contributing factors. Yet, the unambiguously 
most important predictor of thromboses was disease severity and, 
partially overlapping, the antibody response against SARS-CoV-2. This 
result is not surprising as COVID-19 is associated with coagulopathy and 
thrombotic complications, particularly in severe disease [3,7,8,86,87]. 
Along these lines, microthrombi are frequently diagnosed only post- 
mortem and we would have missed them, which poses a limitation. 

The most apparent limitation of our endeavour, however, is the lack 
of validation cohorts. The creation of an independent COVID-19 cohort, 
or a comparison cohort with another respiratory infectious disease, with 
available data on thrombotic events and a deep molecular characteri-
sation, including antibodies against SARS-CoV-2 and large cytokine and 
aPL panels, is laborious. However, we have taken all conceivable steps to 
remedy this lack: (1) To some extent, the current study can be viewed as 
an extension of our previous work [18] where we identified the strength 
of the antibody response against SARS-CoV-2 proteins to be a main 
driver of aPL levels, and where we identified the same candidates to be 
enriched as here. In this regard, the present study already served as a 
validation cohort of our recent undertakings. (2) In agreement with this, 
whenever possible, we have included publicly available data, to 
compare our findings. Thus, independent controls have been inserted on 
multiple occasions in the study. (3) We have welcomed complexity in 

Table 6 
List of features predicting select aPL levels.  

aPL Identified with Boruta and used in GLM After AIC improvement 

PT IgM 
~ 

NC IgG, PC1 IgG, disease severity, 
vaccination status, acute SARS-CoV-2 
infection, TNF-α, S100A8/A9, IP-10, IL- 
8, age, MIP-1α, Spike IgA, RBD IgG 

NC IgG, MIP-1α, IL-8, age 

AnV IgM 
~ 

NC IgG, PC1 IgG, RBD IgA, PC1 IgA, 
disease severity, acute SARS-CoV-2 
infection, age, TNF-α, IL-17 A, 
vaccination status, IL-4 

NC IgG, IL-17 A, disease 
severity, age 

β2GPI 
IgM ~ 

NC IgG, NC IgA, RBD IgA, disease 
severity, vaccination status, age, IL-4, 
TNF-α, SDF-1α, IL-17 A, age, MIP-1α, 
PC1 IgG 

NC IgG, NC IgA, SDF-1α, IL-4 

CL IgG ~ 
NC IgG, Spike IgG, PC1 IgG, RBD IgA, 
Spike IgA, PC1 IgA, IL-8, IL-4, MIP-1α, 
SDF-1α, age 

PC1 IgG, Spike IgA, Spike 
IgG, IL-8, NC IgG, SDF-1α, 
age  
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Fig. 7. Thrombotic events are mainly associated with SARS-CoV-2 disease severity and evidence for association with aPL is strongly limited and likely non-existent. 
We applied several regression models for the identification of potentially relevant parameters correlated with the occurrence of thromboses. A. Shown are the data for 
conventional linear multivariable regression for all and selected features, with (dark grey) and without (yellow) AIC improvement. The exponentiated regression 
coefficient with the respective 95% confidence interval is shown. B. Bayesian multivariable logistic regression model. Three priors were used and compared: an 
unregularised prior, a LASSO, and a regularised horseshoe. Disease severity showed an odds ratio of 2.98 (CrI95%: 1.80-5.81) and stood out as the most correlated 
parameter when using the regularised horseshoe shrinkage prior. C. A multiadaptive regression spline model (MARS) was used, tuned for binomial outcome data. 
Disease severity emerged as the most correlated feature with thrombosis. D. Random forest regression with Boruta suggested that disease severity is the most 
correlated parameter with thrombosis. E. Based on consensus information from all four regression methodologies, we selected the most important parameters and 
built models with them. The equations are displayed here. F. Model-based predicted probabilities for the occurrence of thrombosis are compared with the observed 
occurrences. G. ROC curves with respective AUC values for each of the models. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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our dataset and have accounted for it. Conversely, the incentives to 
exclude heterogeneity in cohort-based studies, to make the findings 
more robust, often result in a lack of generalisability [88,89], ques-
tioning the relevance of the finding for the larger, heterogeneous pop-
ulation. (4) We have been cautious when interpreting the results and 
have provided extensive contextualisation. Moreover, we provided 
detailed descriptions of the methods and made the code used to conduct 
the analyses fully available. 

Ultimately, there can be many incentives to not only observe and 
describe associations but to ascribe causality. In the heat of the SARS- 
CoV-2 pandemic when rapid learning was paramount, many erudite 
speculations turned into rapid shots, fired without having a clear vision. 
While idleness may oppose progress, hasty conclusions, perhaps 
appearing attractive, bear a danger, too, by disseminating questionable 
knowledge as factual under the umbrella of science. In this regard, the 
pandemic may have contributed to understanding the importance of 
being aware of our own ignorance, our docta ignorantia [90], which 
builds the foundation of our scientific aspiration. 
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Cáceres Agra, S. Calimli, R. Capra, M. Carrabba, C. Casasnovas, M. Caseris, 
M. Castelle, F. Castelli, M.C. de Vera, M.V. Castro, E. Catherinot, M. Chalumeau, 
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Y. Gul, S.N. Guner, M. Gut, J. Hadjadj, F. Haerynck, R. Halwani, L. Hammarström, 
N. Hatipoglu, E. Hernandez-Brito, M.S. Holanda-Peña, J.P. Horcajada, S. Hraiech, 
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L. Haljasmägi, M. Migaud, K. Särekannu, J. Maslovskaja, N. de Prost, Y. Tandjaoui- 
Lambiotte, C.-E. Luyt, B. Amador-Borrero, A. Gaudet, J. Poissy, P. Morel, 
P. Richard, F. Cognasse, J. Troya, S. Trouillet-Assant, A. Belot, K. Saker, P. Garçon, 
J.G. Rivière, J.-C. Lagier, S. Gentile, L.B. Rosen, E. Shaw, T. Morio, J. Tanaka, 
D. Dalmau, P.-L. Tharaux, D. Sene, A. Stepanian, B. Megarbane, V. Triantafyllia, 
A. Fekkar, J.R. Heath, J.L. Franco, J.-M. Anaya, J. Solé-Violán, L. Imberti, 
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