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ABSTRACT Predicting which patients are at greatest risk of severe disease from 
COVID-19 has the potential to improve patient outcomes and improve resource 
allocation. We developed machine learning models for predicting COVID-19 prognosis 
from a retrospective chart review of 969 hospitalized COVID-19 patients at Robert 
Wood Johnson University Hospital during the first pandemic wave in the United States, 
focusing on 77 variables from patients’ first day of hospital admission. Our best 77-
variable model was better able to predict mortality (receiver operating characteristic 
area under the curve [ROC AUC] = 0.808) than CURB-65, a commonly used clinical 
prediction rule for pneumonia severity (ROC AUC = 0.722). After identifying highly 
predictive variables in our full models using Shapley additive explanations values, we 
generated two models, platelet count, lactate, age, blood urea nitrogen, aspartate 
aminotransferase, and C-reactive protein (PLABAC) and platelet count, red blood cell 
distribution width, age, blood urea nitrogen, lactate, and eosinophil count (PRABLE), 
that use age and five common laboratory tests to predict mortality (PLABAC: ROC AUC 
= 0.796, PRABLE: ROC AUC = 0.793), which also outperformed CURB-65. We externally 
validated PLABAC using data from the National COVID Cohort Collaborative Data Enclave 
from 7901 hospitalized COVID-19 patients from the pre-vaccination period and 1547 
from the vaccination period, yielding ROC AUCs of 0.755 and 0.766, respectively. This 
study demonstrates that our models can accurately predict COVID-19 outcomes from 
a small number of variables obtained early in a patient’s hospital stay in patients from 
institutions around the United States after the initial pandemic wave. These models can 
serve as a clinical prediction aid and accurately capture a patient’s prognosis using a 
small number of routinely obtained laboratory values.

IMPORTANCE COVID-19 remains the fourth leading cause of death in the United States. 
Predicting COVID-19 patient prognosis is essential to help efficiently allocate resources, 
including ventilators and intensive care unit beds, particularly when hospital systems are 
strained. Our PLABAC and PRABLE models are unique because they accurately assess a 
COVID-19 patient’s risk of death from only age and five commonly ordered laboratory 
tests. This simple design is important because it allows these models to be used by 
clinicians to rapidly assess a patient’s risk of decompensation and serve as a real-time aid 
when discussing difficult, life-altering decisions for patients. Our models have also shown 
generalizability to external populations across the United States. In short, these models 
are practical, efficient tools to assess and communicate COVID-19 prognosis.

KEYWORDS SARS-CoV-2 infection, viral infections, machine learning, hospital 
medicine, biomarkers, pneumonia, ICU, coagulation, coagulopathy, renal failure

C OVID-19 is an emergent health challenge with over 700 million cases around the 
world resulting in over six million deaths (1). Although many people infected with 
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SARS-CoV-2 have few or no symptoms, others develop more severe complications, 
including acute respiratory distress syndrome and multiorgan failure (2). The ability 
to predict progression to severe illness has been the subject of intense study, especially 
as effective interventions have often been limited during outbreak scenarios, resulting 
in suboptimal resource allocation (3–5). Conversely, not allocating sufficient resources 
to patients at risk of serious illness may lead to unnecessary loss of life, while giving 
aggressive therapies to patients at low risk of dying can lead to unnecessary complica­
tions (6–8).

Particular demographic variables, comorbidities, and laboratory findings have 
been found to be significant risk factors for severe COVID-19, sometimes in ways 
that may have not been considered a priori  (9–13). Since many front-line clinicians 
continue to manage numerous COVID-19 patients daily, quickly understanding the 
risk landscape of their patients is useful.  Predictive algorithms based on machine 
learning techniques can assist clinicians in identifying which patients are most likely 
to have severe COVID-19 complications, allowing for early intervention to mitigate 
decompensation and improved utilization of scarce resources during high-volume 
scenarios (14). We now use data from a retrospective analysis collected at the start 
of the pandemic in the United States to build algorithms to improve prediction of 
COVID-19 outcomes and identify the key factors that predict the disease’s outcome 
using SHapley Additive exPlanations (SHAP) values (Fig. S1 and “Feature importance 
and generation of simplified models” in Materials and Methods). We found that 
this approach outperformed CURB-65, a clinical prediction rule originally developed 
for community-acquired pneumonia used by physicians for predicting COVID-19 
outcomes (15–19) and performed well in two independent large national cohorts 
during both the prevaccination and vaccination periods.

RESULTS

Patient characteristics

The patient cohort used to generate our models was derived from patients hospitalized 
at Robert Wood Johnson University Hospital (RWJUH) with COVID-19 during the initial 
pandemic wave between 19 March 2020 and 31 May 2020. Of the 77 variables we chose 
to include in our model (Table S5), the variables significantly associated with COVID-19 
mortality are summarized in Table 1. Variables related to patient outcomes such as 
intensive care unit (ICU) admission and treatment data were excluded from Table 1 and 
from our models. The patient population we studied had a relatively high frequency 
of co-morbidities and often had deranged vital signs at baseline (Table 1), consistent 
with their acute illness, and a high COVID-19 mortality rate (30.8%). As expected, in 
univariant analyses, there were significant associations of mortality with number of 
comorbidities, those related to cardiovascular fitness, hypercoagulable state, dementia, 
and hyperlipidemia, and with low systolic and diastolic blood pressures.

Predictive ability of full mortality models

Since our major aim was to develop a predictive model for mortality, we compared five 
models with CURB-65 (Table 2), using the validated cutoff value of 2 for the CURB-65 
metric based on sensitivity analysis (Table S4) (15). The best-performing algorithm for 
predicting mortality by mean cross-validated receiver operating characterisstic area 
under the curve (ROC AUC) was the voting classifier, but the result for extreme gradi­
ent boosted trees (XGBoost) was similar and had a slightly improved F1 score, which 
is relevant in predicting patients with high likelihood of dying (Table 2). The ROC 
AUC was much lower for CURB-65 than for our highest-performing algorithms, but 
with comparable F1 score. All five algorithms had improved probability estimates for 
COVID-19 mortality than CURB-65, as measured by negative log loss. The voting classifier 
outperformed CURB-65 by providing both better mortality risk prediction, mostly driven 
by superior identification of low-risk patients and proper probability calibration.
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Feature importance in mortality determinations

SHAP values permit examining how single variables and combinations influence a 
model’s prediction of risk. Using the mortality voting classifier, the 10 most important 
variables in the mortality-predicting model (Fig. 1) include important components of 
CURB-65 with age as the strongest risk factor. We generated a six-variable model 
called platelet count, lactate, age, blood urea nitrogen, aspartate aminotransferase, and 
C-reactive protein (PLABAC), which uses variables that are both top 10 performers by 
SHAP values in our mortality voting classifier and are also available as part of the 
National COVID Cohort Collaborative Data Enclave (N3C) data set we aimed to use 
for external validation. We also generated an additional model called PRABLE (platelet 
count, red cell distribution width, age, blood urea nitrogen, lactate, and eosinophil 
count) that utilized the top six variables from Fig. 1. These each had similar performance 

TABLE 1 Demographics, comorbidities, vital signs, and laboratory findings used in full variable models significantly associated with COVID-19 mortality in 
univariate analysisa, c

Variable Patients who survived Patients who died P value SMD
b

704 217
Age, median (Q1, Q3) 60.0 (48.0, 71.0) 74.0 (64.0, 84.0) <0.001 0.846
Ethnicity, n (%)
  African American 101 (14.3) 25 (11.5) 0.007 0.403
  East Asian 49 (7.0) 15 (6.9)
  Hispanic 253 (35.9) 47 (21.7)
  Other ethnicity 26 (3.7) 9 (4.1)
  South Asian 41 (5.8) 10 (4.6)
  White 234 (33.2) 111 (51.2)
H/O arrhythmia, n (%) 77 (10.9) 48 (22.1) 0.003 0.305
H/O coronary artery disease or MI, n (%) 118 (16.8) 65 (30.0) 0.002 0.316
H/O cerebrovascular disease, n (%) 60 (8.5) 42 (19.4) 0.001 0.317
H/O malignancy, n (%) 72 (10.2) 48 (22.1) 0.001 0.327
H/O hyperlipidemia, n (%) 244 (34.7) 105 (48.4) 0.028 0.281
H/O dementia, n (%) 75 (10.7) 50 (23.0) <0.001 0.336
Systolic blood pressure, median (Q1, Q3) 132.0 (118.0, 146.0) 123.0 (108.0, 140.0) 0.001 −0.342
Diastolic blood pressure, median (Q1, Q3) 75.0 (66.0, 83.0) 70.0 (60.0, 78.0) <0.001 −0.403
Patient responsive, n (%) 657 (93.3) 175 (80.6) <0.001 0.384
Altered mental status, n (%) 64 (9.1) 52 (24.0) <0.001 0.409
AST, median (Q1, Q3) 45.0 (32.0, 71.0) 56.0 (38.0, 86.0) 0.004 0.283
Albumin, mean (SD) 3.6 (0.5) 3.4 (0.5) <0.001 −0.433
BUN, median (Q1, Q3) 15.0 (10.0, 25.0) 30.5 (19.0, 49.8) <0.001 0.615
CO2, total, median (Q1, Q3) 22.4 (20.3, 24.2) 21.1 (19.1, 23.6) 0.013 −0.257
Creatinine, median (Q1, Q3) 0.9 (0.7, 1.2) 1.3 (0.9, 1.9) <0.001 0.219
D-dimer level, median (Q1, Q3) 1,003.0 (560.5, 1,758.8) 1,272.0 (849.0, 3,962.0) <0.001 0.327
Lactate, median (Q1, Q3) 1.5 (1.1, 2.0) 2.1 (1.5, 3.0) <0.001 0.573
Lymphocyte count, absolute, median (Q1, Q3) 0.9 (0.6, 1.3) 0.7 (0.5, 1.1) 0.006 −0.145
MPV, median (Q1, Q3) 8.4 (7.9, 9.1) 9.0 (8.1, 9.7) <0.001 0.416
Platelet count, median (Q1, Q3) 229.5 (176.0, 303.5) 199.0 (154.0, 275.0) 0.007 −0.310
Potassium, median (Q1, Q3) 4.0 (3.7, 4.4) 4.2 (3.8, 4.7) 0.047 0.253
RBC MCHC, median (Q1, Q3) 33.5 (32.7, 34.1) 33.0 (32.1, 33.7) <0.001 −0.422
RDW, median (Q1, Q3) 14.1 (13.4, 15.3) 15.2 (14.0, 17.1) <0.001 0.460
Serum protein, total, median (Q1, Q3) 7.3 (6.8, 7.7) 7.1 (6.6, 7.5) 0.038 −0.261
Troponin T, elevated, n (%) 79 (15.5) 64 (38.8) <0.001 0.542
aBonferroni corrected Kruskal-Wallis H test was used for all non-normal continuous variables. Bonferroni corrected two-sample t-test was used for albumin, the only normally 
distributed continuous variable. Chi-squared tests were used for all categorical variables.
bSMD was used for assessment of effect size, with positive values indicating direct relationships and negative values indicating inverse relationships.
cAST, alanine aminotransferase; BUN, blood urea nitrogen; H/O, history of; MCHC, mean corpuscular hemoglobin concentration; MI, myocardial infarction; MPV, mean 
platelet volume; Q1, first quartile; Q3, third quartile; RBC, red blood cell; RDW, red blood cell distribution width; SD, standard deviation; SMD, standardized mean difference.
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to the models generated with the full set of features and outperformed the ROC AUC 
score generated by CURB-65 for our population (Table 1). In particular, the PLABAC 
voting classifier and the PRABLE random forest model were the strongest in terms of 
ROC AUC. We developed a web tool that enables physicians to estimate their hospital­
ized patient’s risk using the PLABAC voting classifier (https://plabac-bc6be52803c8.hero­
kuapp.com/). These analyses show that age and either of two sets of five commonly 
obtained laboratory tests can be used for highly predictive models of mortality.

External validation of PLABAC model on N3C data set

We validated the performance of the PLABAC model in predicting COVID-19 mortality on 
an external data set utilizing the N3C database, dividing the test data into data before 
and after 1 March 2021, to evaluate the models’ performances on patients before and 
during the era of mass vaccination for COVID-19 (see Table 4); two of the variables in 
the PRABLE model were not available in the N3C data set. We found that the PLABAC 
voting classifier was the strongest performer by ROC AUC in both our own data and in 
both external data sets (Tables 1 and 4). The model performed slightly worse overall on 
the two external data sets than of the population on which it was trained but overall 
still had strong performances on both data sets. PLABAC had a slightly higher ROC AUC 
and a slightly lower F1 in predicting COVID-19 prognosis in the more recent (vaccine-era) 
patients, which may be due to the lower COVID-19 mortality in that time frame.

Decrease in full model performance for prediction of ICU admission and 
intubation

For predicting intubation (Table 3), we considered our voting classifier the best model 
for analysis because it had the best ROC AUC, but the support vector machine (SVM) 
classifier had a slightly inferior ROC AUC with a better F1 score. The XGBoost algo­
rithm was our strongest for predicting ICU admission by ROC AUC, but the voting 
classifier had a far better F1 score (Table 3). However, all these models were not as 
accurate in predicting intubation and ICU admission compared to predicting mortality. 
The calculated SHAP values for the features weighed in predicting ICU admission and 
intubation are instructive (Fig. S2 and S3). Many of the requisite variables have been 
well validated as individual risk factors, are consistent with proposed COVID-19 disease 

TABLE 2 Comparison of CURB-65 with other models for mortality predictiona, b

Algorithm No. of 
features

Accuracy Sensitivity Specificity PPV NPV F1 ROC AUC Negative log 
loss

CURB-65 5 0.705 0.756 0.689 0.428 0.901 0.547 0.722 −0.602
Full logistic regression 77 0.690 0.742 0.675 0.414 0.896 0.530 0.792 −0.578
Full random forest 77 0.805 0.285 0.964 0.727 0.815 0.399 0.803 −0.449
Full XGBoost 77 0.750 0.682 0.771 0.487 0.888 0.564 0.802 −0.500
Full SVM 77 0.718 0.664 0.734 0.438 0.878 0.524 0.785 −0.451
Full voting 77 0.795 0.521 0.879 0.579 0.858 0.540 0.808 −0.466
PLABAC logistic regression 6 0.706 0.713 0.703 0.425 0.890 0.532 0.782 −0.568
PLABAC random forest 6 0.768 0.571 0.828 0.510 0.863 0.536 0.796 −0.479
PLABAC XGBoost 6 0.709 0.696 0.713 0.426 0.885 0.527 0.788 −0.553
PLABAC SVM 6 0.730 0.668 0.748 0.458 0.880 0.540 0.784 −0.459
PLABAC voting 6 0.772 0.580 0.831 0.514 0.866 0.543 0.796 −0.491
PRABLE logistic regression 6 0.719 0.700 0.724 0.443 0.888 0.540 0.783 −0.567
PRABLE random forest 6 0.787 0.585 0.849 0.550 0.870 0.564 0.793 −0.483
PRABLE XGBoost 6 0.721 0.686 0.731 0.445 0.885 0.536 0.788 −0.538
PRABLE SVM 6 0.749 0.663 0.775 0.481 0.883 0.555 0.783 −0.453
PRABLE voting 6 0.769 0.580 0.827 0.512 0.866 0.539 0.792 −0.485
aAll metrics (other than CURB-65) were derived via stratified 10-fold cross-validation on our data set and averaged across the 10-folds by the mean. Top-performing models 
of each class are bolded.
bNPV, negative predictive value; PPV, positive predictive value; SVM, support vector machine.
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mechanisms, and are predictive of mortality in our model and in other models (15–18, 
20–24). However, other risk factors for intubation and ICU admission in our voting 
classifier model were more complex. Advanced age was associated with lower likelihood 
of intubation and ICU admission, despite their clear link to higher mortality likelihood 
(Fig. 2). Similarly, a history of dementia predicted a lower chance of ICU admission or 
intubation, but increased odds of death (Fig. S4). These conflicting observations may 
indicate that our models for these two outcomes captured the allocation of scarce 
resources (triaging) during the initial COVID-19 wave rather than a true reflection of 
patient necessity for intensive treatment.

DISCUSSION

Overall, we developed two algorithms that use a small number of variables that outper­
formed CURB-65 in predicting COVID-19 mortality, one of which was shown to have 
external validity. Although our algorithms performed similarly to CURB-65 in identifying 
patients at high mortality risk, in general, they were far better in identifying low-risk 
patients, therefore improving reliability. Our ability to predict intubation and ICU 
admission was weaker than mortality prediction, which may reflect clinical decisions 
related to triage during an overwhelming epidemic wave (11, 25, 26).

Our best classifiers for mortality prediction by ROC AUC performed better or similarly 
than in some studies (10, 11, 27–30) but worse than in others (10, 31–39). However, the 
optimal way to compare these predictive models is to assess their generalizability to 
other populations. Variation in patient population, sample size, use of validation sets vs 
stratified cross-validation, hospital length of stay (LOS), and patient selection all affect 
algorithm performance. This is highlighted by the poor performance of CURB-65 in our 
population compared to other studies (15–18). While CURB-65 is reasonably sensitive for 
COVID-19 prognosis, it is limited by its lack of specificity, which reduces its applicability 
to the real world of clinical medicine. Comparisons with prior COVID-19 prediction model 

FIG 1 The 10 most important features identified by SHAP values for predicting mortality by the 77-variable voting classifier. Each point on the plot is a patient’s 

value for the specified variable, in descending ranked absolute feature importance for the voting classifier for mortality prediction. The numerical feature values 

are shown on a red (high)-blue (low) scale. Impact on model output is shown as log odds for mortality. Abbreviations: AST, aspartate aminotransferase; BUN, 

blood urea nitrogen; MPV, mean platelet volume; RDW, red blood cell distribution width.
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outcomes are limited by differences in populations, disease severity, treatment modali­
ties available, and methodologies.

Although there have been prior risk scores for COVID-19 prognosis (10, 31–39), we 
believe ours is an improvement for several reasons. First, our risk models, PLABAC and 
PRABLE, include only a small number of high-impact variables, which to our knowledge 
is unique among similar works. Our algorithms, trained on a diverse US-based popula­
tion, may be particularly useful for US clinicians, which is further supported by the 
generalizability of the PLABAC model. Finally, we validated our model, unlike in prior 
studies, showing that even for patients in 2021, past the worst days of triaging and 
ventilator shortages in the United States (40), the PLABAC model performed well in 
prognosticating across a wide range of hospital environments; this provides confidence 
that the model’s predictions are generalizable.

A second strength is that using an algorithm based on only six routinely gathered 
variables to predict mortality may provide utility for frontline clinicians. Aggregating a 
patient’s risk of death into a six-variable package is especially useful in circumstances in 
which a clinician quickly needs to make rapid decisions. The models we have constructed 
are easy to adopt and are not only of theoretical interest but also practical to enable 
difficult, life-altering clinical decisions. Early identification of high-risk patients may 
enable physicians to monitor more closely, begin treatments earlier, and facilitate 
discussions about prognosis with patients and their family. Such scores can also be used 
to communicate quickly to other providers about prognosis and can be used in a manner 
similar to other prognostic scores such as the model for end-stage liver disease or the 
CHADS score used for stroke prognostication (41, 42). Importantly, our models are often 
able to predict a patient’s course months before demise or hospital discharge. Perhaps 
more valuable to a clinician is not only the binary variable of mortality but also the actual 
probability of demise or not, which provides a sense of the model’s confidence. We have 
used the 50% chance of mortality as the cut-off, but this treats a 90% and 51% chance of 
predicted mortality in exactly the same way. In this respect, the PLABAC model repre­
sents a significant improvement over CURB-65. The combination of a small number of 
variables and external validation aligns our models with the intrinsic pathophysiology of 
COVID-19 and not a temporal or institutional quirk. With novel vaccine-resistant 
COVID-19 variants appearing regularly and COVID-19 remaining the fourth leading cause 
of overall mortality in the United States (43), the need for a rapid method to assess 
COVID-19 outcome remains high (19).

Our predictive performances may be conservative compared to others since (i) we 
intentionally excluded patients hospitalized for <24 h, either due to death in that time 
frame or mild illness and discharge to home, because this represents an obvious 
dichotomy to clinicians; (ii) our time frame for mortality events was longer than in other 
studies (27–29), including patients who had protracted hospital courses before their 

TABLE 3 Comparison of full-feature algorithms for intubation and ICU admissiona

Algorithm No. of 
features

Accuracy Sensitivity Specificity PPV NPV F1 ROC AUC Negative log 
loss

Intubation lgistic regression 77 0.666 0.643 0.671 0.313 0.891 0.420 0.729 −0.622
Intubation random forest 77 0.811 0.023 0.995 0.333 0.814 0.043 0.761 −0.430
Intubation XGBoost 77 0.830 0.293 0.955 0.621 0.853 0.391 0.754 −0.464
Intubation SVM 77 0.737 0.585 0.772 0.377 0.889 0.457 0.752 −0.426
Intubation voting 77 0.826 0.242 0.963 0.612 0.845 0.343 0.767 −0.426
ICU logistic regression 77 0.705 0.756 0.689 0.428 0.901 0.547 0.722 −0.602
ICU random forest 77 0.680 0.610 0.699 0.362 0.867 0.452 0.711 −0.615
ICU XGBoost 77 0.796 0.165 0.971 0.613 0.808 0.249 0.747 −0.480
ICU SVM 77 0.782 0.390 0.890 0.494 0.841 0.430 0.731 −0.482
ICU voting 77 0.732 0.540 0.785 0.416 0.861 0.467 0.735 −0.463
aAll metrics were derived via stratified 10-fold cross-validation on our data set and averaged across the 10-folds by the mean. Intubation and ICU models were evaluated to 
predict those outcomes, respectively. Top-performing models of each class are bolded.
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FIG 2 Importance of patient age in the prediction of mortality, intubation, and ICU admission. SHAP 

values for age. The y axis represents the impact of a value on our model output expressed in log odds, 

where a more positive number is associated with higher risk, and the x axis is the numerical value of age, 

in years.
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demise; (iii) we limited analysis to variables likely available to physicians within the first 
24 h of hospitalization, which excludes such factors as number of ICU admissions and 
later therapeutic interventions (30, 37); (iv) our models were designed to sacrifice 
specificity and overall ROC AUC to favor better identification of illness severity, which was 
less common but more important to recognize; and (v) several prior COVID-19 outcome 
predictive algorithms used radiographic biomarkers, which may not be readily available 
or consistently interpreted under epidemic conditions (32, 35, 37) and were not used in 
our study.

This study has several important limitations; it was conducted from a data set 
from a single institution in early 2020 at the start of the COVID-19 pandemic in the 
United States; models generated from these data may not be fully representative of 
COVID-19 patients throughout the United States. Differing triage thresholds also may 
limit generalizability of algorithms predicting intubation and ICU admission since they 
depend on local epidemic status. The counter-intuitive differences in the predictive 
values of age and dementia for mortality on the one hand and ICU admission/intuba­
tion on the other may reflect such physician triage, explaining the reduced algorithm 
accuracy predicting those events (25, 26) Because we were unable to obtain symptom 
data in our external 2021 validation data set, we were unable to assess how CURB-65 
performed on the external data set.

It also is important to consider that the selection of the patients included in the 
training and testing of the model affects its performance and use cases. Our models 
are designed to be used as general-purpose tools to stratify the mortality risk for all 
hospitalized COVID-19 patients within the critical first 24 h of their hospital stay, which 
can aid in triaging patients before there is obvious clinical evidence of decompensation. 
This approach enables outcome prediction during the most uncertain portion of a 
patient’s hospital stay. This approach enables outcome prediction during the portion of 
a patient’s hospital stay with the greatest prognostic uncertainty. While we attempted to 
tailor our models to this end by excluding patients hospitalized for less than 24 h, some 
of the predictive performance of the model will be affected by patients who are already 
decompensated upon arrival to the hospital or conversely represent hospital admissions 
with a low likelihood of serious illness. Future directions of our study include focusing 
on COVID-19 patients in the ICU and generating a rolling estimate of prognosis by 
continually incorporating new clinical information. An important limitation of observa­
tional studies such as we present is the confounding that is inherent to retrospective 
studies. We hope to address this limitation and to refine our model’s performance using a 
prospective cohort of COVID-19 patients in the future.

Our study used SHAP values to identify important factors in predicting severe 
COVID-19 outcomes; however, most comorbidities and demographic variables were not 
highly predictive. Advanced age, a well-documented risk factor for severe COVID-19 (2, 
9–12, 15, 20, 41, 42), was the strongest predictor of mortality in our study and most 
likely accounted for the highest mortality rates in non-Hispanic whites, who were older 
on average in our studied population. Abnormal blood urea nitrogen (BUN) also is a 
well-validated prognostic marker of severity (15, 23), as COVID-19 causes renal injury 
through hypotension, direct podocyte infection, and immune dysregulation following 
cytokine storm (23, 44, 45). Our models highlighted elevated lactate, reflecting both 
abnormal metabolism and hypoxia, previously implicated in poor COVID-19 prognosis (9, 
18, 46). Low platelet count is an indicator of thrombotic activity and platelet turnover, 
which predispose to the severe COVID-19 complications of stroke and disseminated 
intravascular coagulation (13, 47, 48). Red blood cell distribution width (RDW), a marker 
of variability of red blood cell size, has been linked to adverse COVID-19 outcomes 
through its association with inflammation, hemolysis, and intravascular coagulopathy 
(49–51). Low eosinophil count also was a useful predictor of poor COVID-19 outcomes, 
consistent with prior reports documenting its perturbation (20, 21, 24, 52–54). Since 
eosinophil count was not identified in univariate analysis (Table 1), its relationship 
with COVID-19 may not be linear. We considered whether eosinophil count could be 
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confounded by corticosteroid administration, which can lower eosinophil count and may 
hold a mortality benefit for COVID-19. Because only 66 (7.2%) of the 921 patients in 
our cohort were known to have been administered steroids while 421 members of the 
cohort had an absolute eosinophil count of 0, we believe that the effect was unaffected 
by the variable exposure. This is further supported by the body of evidence linking 
COVID-19 outcomes with eosinophil count, including one study that excluded patients 
given corticosteroids (55). Aspartate aminotransferase (AST) and C-reactive protein (CRP) 
are markers of liver damage and inflammation, and both are linked with poor COVID-19 
prognosis (13, 48, 56–58). Overall, the risk factors identified are consistent with an illness 
leading to mortality due to coagulopathy, inflammation, and decreased oxygenation 
of critical organs. The variables that are most predictive in our models highlight that 
COVID-19 is a multisystemic disease with significant morbidity and mortality occurring 
because of coagulopathy and direct damage to critical organs such as the lung, kidney, 
heart, and liver. Such pathophysiology separates COVID-19 from other infections that are 
essentially respiratory such as influenza and bacterial pneumonia. This difference may 
explain why the CURB-65 score, as well as other clinical prediction rules, may not suffice 
for COVID-19 prognosis.

Despite the limitations above, that PLABAC still performed relatively well on the 
broader external data set is a sign of its utility and promise. We envision PLABAC and 
PRABLE being used by clinicians to predict prognosis of their patients with COVID-19, 
efficiently allocate resources, and facilitate communication about an individual patient’s 
chances of survival. Overall, this work has generated models that can create clinically 
useful predictions for patients being hospitalized for COVID-19 and represents a practical 
first step for the inclusion of machine learning into clinical decision-making for COVID-19 
that can serve as a template for future prognostic models.

MATERIALS AND METHODS

Data collection and patient population

We performed a retrospective analysis of 969 adults who were admitted between 19 
March 2020 and 31 May 2020 to the RWJUH in New Brunswick with a diagnosis of 
COVID-19 infection during the peak of the first wave in New Jersey. Through a retrospec­
tive chart review, the authors systematically collected data including demographics, 
comorbidities, symptoms, and inpatient labs, vitals, and medical management. The data 
were then cleaned over multiple courses of quality control, with each chart reviewed 
by ≥2 independent readers. Comorbidities, reported from the chart to remove surveyor 
bias, were later reclassified by relevant category as validated by two independent 
observers (Tables S1 and S2), and all laboratory values were downloaded from the 
hospital database. All 935 patients who tested positive for SARS-CoV-2 infection by 
nasopharyngeal swab using PCR were included in our study, except for 16 patients 
who had a hospital stay of <24 h. Patients who were diagnosed with COVID-19 clin­
ically but were never PCR-confirmed were also excluded from the model (n = 34). 
Patients readmitted to the hospital including after the pre-specified end date were 
included. Time 0 was defined as the first available time stamp of a patient’s initial 
laboratory value obtained from either the hospital or the emergency room. Additional 
data included length of stay, readmission number, number of readmissions, discharge 
location (rehabilitation facility, home, skilled nursing facility, or death), ICU LOS, and date 
of death.

Outcomes

We developed models to predict three clinical outcomes indicative of illness severity: 
intensive care unit admission, intubation, or death. Intubation was defined as any form 
of mechanical ventilation. Death was defined as a patient dying in the hospital or being 
discharged to hospice care, as detailed in Table S3.

Research Article mBio

September/October 2023  Volume 14  Issue 5 10.1128/mbio.01508-23 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 2

3 
N

ov
em

be
r 

20
23

 b
y 

19
0.

2.
11

1.
22

8.

https://doi.org/10.1128/mbio.01508-23


Feature processing and selection

All models began with all variables recorded within the first day of hospital admission. 
We assumed that binary patient history terms such as pregnancy, smoking history, 
comorbidities, physical examination findings, and symptoms not recorded in a patient’s 
chart were not present. The models included only categorical features that were present 
in >5% of our patient population, which excludes some of the comorbidities listed in 
Table S1. Ethnicity and sex, used in their constitutive categories, were treated as binary 
variables. Continuous variables with values in ≥50% of our patient population were 
included, and values that were obvious recording errors were removed. We imputed the 
results of missing continuous variables using the median value in our patient population. 
To reduce selection bias, we assessed whether the proportion of missing laboratory 
tests differed between patients who had a severe illness (ICU admission, intubation, 
or death) or not and excluded those tests whose values were not missing at random 
(independent t-test, P < 0.001). Tests quantifying urine blood or leukocyte esterase were 
converted to an ordinal scale. We calculated variance inflation factors (VIFs) for our data 
set to identify correlated variables, removing those with VIF of >5 from analyses (59). 
Some variables that are often used in concert clinically, such as history of chronic kidney 
disease, and serum levels of BUN and creatinine were included in our analyses despite 
their representing a similar underlying pathology. Our rationale was that the interaction 
between these variables may hold prognostic utility, which mirrors how they are used 
in clinical practice. We subsequently identified that patients who were unresponsive or 
had altered mental status were significantly (P < 0.05, independent t-test for each) less 
likely to have recorded symptoms, likely because such patients cannot provide a reliable 
history; we thus removed these symptoms from our analysis. Following this step, each 
variable was standardized by removing the mean and scaling to unit variance. These 
steps yielded a set of 77 variables relating to demographics, medical history, symptoms, 
physical exam findings, and laboratory values obtained early in the hospital course (Table 
S3).

Machine learning analysis

We initially selected four machine learning algorithms (LASSO [least absolute shrinkage 
and selection operator] logistic regression, random forest, extreme gradient boosted 
trees, and SVM) based on prior utility for similar tasks (10, 11, 31). Each model was 
evaluated using 10-fold stratified cross-validation on our own data set. Algorithms were 
evaluated for sensitivity, specificity, positive predictive value, negative predictive value, 
F1 metric, receiver operating characteristic area under the curve (ROC AUC), and negative 
log loss value, as described (10, 12, 15, 16, 27, 30, 32, 33, 36, 38, 57, 60, 61). Class 
weight was balanced by the ratio of minority to majority class. Hyperparameters for 
each algorithm were optimized using a random search through the parameter space. A 
voting classifier was generated using input from the four machine learning models and 
used soft voting, averaging the predicted probabilities generated by each model. For 
analysis of mortality, algorithms were compared to CURB-65, a 5-point metric (including 
confusion, elevated age, BUN and respiratory rate, and decreased systolic or diastolic 
blood pressure) for assessing community-acquired pneumonia severity (CURB-65 score), 
with scores corresponding to 30-day mortality risk (15). These probabilities were used to 
calculate the negative log loss value of CURB-65 and a score of 2 used for the mortality 
cutoff, as described (15) and validated on our own cohort (Table S3).

Feature importance and generation of simplified models

Feature importance was calculated using SHapely Additive exPlanations (SHAP) (62). 
Shapley values use game theory to fairly assign payout in a task by measuring the 
contribution of each of the players in the task and their interactions and can be used 
in machine learning to explain how combinations of variables contribute to the final 
prediction in loge odds (referred to herein as log odds). We used SHAP values to generate 
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the most predictive variables for COVID-19 prognosis. Using the top 10 most predictive 
variables by SHAP values from our strongest 77-variable classifier (the voting classifier), 
we developed two six-variable models. PLABAC uses variables represented both in this 
top 10 list and in the National COVID Cohort Collaborative Data Enclave data set we used 
for external validation, and PRABLE uses the top six variables.

External validation

To assess our PLABAC model with clinical data external to our institution and time frame, 
we used data from the N3C data set, which includes patients with any encounter after 
1 January 2020 and before 24 September 2021. Included patients had one of a set of 
a priori-defined SARS-CoV-2 laboratory tests, a strong positive diagnostic code, or two 
weak positive diagnostic codes during the same encounter or same date for patients 
admitted prior to May 2020 (39, 63). The cohort definition is publicly available on GitHub 
(64). For our validation data set, we established the definition that for a patient to be 
included, we needed access to their age and all five day 1 laboratory values, and that 
they had an inpatient hospital stay of >1 day with laboratory-confirmed COVID-19. We 
used 1 March 2021 as a breakpoint between the pre-vaccine period and post-vaccine 
period of the COVID-19 pandemic until 24 September 2021. For these two periods, 7901 
(with 1863 [23.6%] deaths) and 1547 (with 285 [18.4%] deaths) patient records met our 
criteria and were used to evaluate the performance of our models (Table 4).

Statistical analysis

For the univariate analyses listed in Table 1, continuous variable normality was assessed 
through the D’Agostino-Pearson test. Bonferroni-corrected Kruskal-Wallis H test was used 
for all non-normal continuous variables. Bonferroni-corrected two-sample t-test was 
used for albumin, the only normally distributed continuous variable. Chi-squared tests 
were used for all categorical variables.

Computation

All analysis was conducted using Python v.3.9.7. LASSO logistic regression, random 
forest, support vector machines, and machine learning metric calculations were 
implemented using scikit-learn v.0.24.2 (65). XGBoost was implemented using XGBoost 
v.1.5.2 (66). NumPy v.1.20.1 and pandas v.1.3.4 were used for data handling (67, 68). 
Statistics were calculated using scipy v.1.7.1 (69) and statmodels v.0.12.2. Figures were 
made with Matplotlib v.1.20.3 and Seaborn v.0.11.2 (70, 71), and SHAP v.0.40.0 was used 
to assess feature importance (62). Table 1 was generated via Python package, tableone 
v.0.7.10 (72).

TABLE 4 Performance of PLABAC models on N3C data between 1 January 2021 and 1 March 2021 (n = 7,901) and between 1 March 2021 and 24 September 
2021 (n = 1,547)a

Population Algorithm Accuracy Sensitivity Specificity PPV NPV F1 ROC AUC Negative log 
loss

Pre-vaccine Logistic regression 0.746 0.695 0.680 0.401 0.879 0.509 0.746 −0.599
Random forest 0.725 0.578 0.771 0.438 0.856 0.498 0.742 −0.542
XGBoost 0.660 0.727 0.640 0.384 0.884 0.502 0.746 −0.604
SVM 0.696 0.670 0.704 0.411 0.874 0.510 0.749 −0.479
Voting 0.735 0.583 0.782 0.452 0.859 0.509 0.755 −0.529

Vaccine Logistic regression 0.760 0.695 0.679 0.328 0.908 0.446 0.760 −0.598
Random forest 0.740 0.572 0.778 0.368 0.889 0.448 0.747 −0.522
XGBoost 0.686 0.726 0.677 0.337 0.916 0.461 0.753 −0.598
SVM 0.696 0.670 0.702 0.337 0.904 0.448 0.758 −0.430
Voting 0.754 0.586 0.792 0.388 0.894 0.467 0.766 −0.513

aModels trained off of PLABAC variables from our own data set and evaluated on N3C data set from before and after the widespread adoption of COVID-19 vaccination in the 
United States, defined as between 1 January 2021 and 1 March 2021 (n = 7901) and between 1 March 2021 and 24 September 2021 (n = 1547). Top-performing models for 
each population are bolded.
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