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Abstract

Background Critically ill hospitalized patients with COVID-19 have greater antibody titers
than those with mild to moderate illness, but their association with recovery or death from
COVID-19 has not been characterized.
Methods In a cohort study of 178 COVID-19 patients, 73 non-hospitalized and 105
hospitalized patients, mucosal swabs and plasma samples were collected at hospital
enrollment and up to 3 months post-enrollment (MPE) to measure virus RNA, cytokines/
chemokines, binding antibodies, ACE2 binding inhibition, and Fc effector antibody
responses against SARS-CoV-2. The association of demographic variables and more than
20 serological antibodymeasureswith intubation or deathdue toCOVID-19wasdetermined
using machine learning algorithms.
ResultsPredictivemodels reveal that IgG binding and ACE2 binding inhibition responses at
1 MPE are positively and anti-Spike antibody-mediated complement activation at
enrollment is negatively associated with an increased probability of intubation or death from
COVID-19 within 3 MPE.
Conclusions At enrollment, serological antibody measures are more predictive than
demographic variables of subsequent intubation or death among hospitalized COVID-19
patients.

Most SARS-CoV-2 infections cause mild to moderate disease and do not
require hospitalization1. Severe disease (i.e., hospitalization or intensive care
unit (ICU) admission) and fatal outcomes are associated with older age,
male sex, underlying comorbidities, and lack of vaccination2,3. Antibodies
protect against SARS-CoV-2 and the development of neutralizing anti-
bodies is the leading candidate for a correlate of protection. Non-

neutralizing antibody responses mediated by the crystallizable fragment
(Fc) region also are critical in COVID-19 pathogenesis4,5, with prolonged
activation of the complement cascade contributing to tissue damage and
symptoms of long COVID6.

Epidemiological and vaccine studies have shown that anti-Spike (S)
IgG, anti-S-receptor-binding domain (S-RBD) IgG, and neutralizing
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Plain language summary

Part of the adaptive immune response to
viruses, such as SARS-CoV-2, is production
of antibodies that are specific to the virus.
Hospitalized patients with severe COVID-19
produce more antibodies against SARS-
CoV-2 than patients with mild to moderate
disease. We studied antibody responses in
people with COVID-19 until either recovery or
death from the disease. Among hospitalized
patients, we analyzed factors, including
demographic characteristics, comorbidities,
and antibody features that could be used to
predict the requirement of intubation or the
occurrence of death from COVID-19. We
found that antibody measurements taken
when people were admitted to the hospital
were better at predicting adverse COVID-19
outcomes than either demographic char-
acteristics or comorbidities. These predictive
measurements could be useful indicators of
disease severity during future pandemics.
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antibodies correlate with protection against SARS-CoV-27,8. The role of
antibodies in the control of SARS-CoV-2 infection and the pathogenesis of
the disease is still ambiguous as studies have consistently shown that both
binding and neutralizing antibody titers are greater in patients with more
severeCOVID-199,10. Thegreatermagnitudeof antibody titers is observed in
severe COVID-19 patients both during the acute phase of the disease and
convalescence9,11. The association of hospitalization and subsequent deaths
in individuals with greater antibody responses raises questions about the
role of antibodies in the protection versus pathogenesis of COVID-19. One
study highlighted that the antibody repertoire in mild COVID-19 patients
exhibits greater diversity, antibody class switching, and affinity maturation
than in severe COVID-19 patients12. Despite having higher antibody titers,
individuals with severe COVID-19 produce less potent and functional
antibodies, thereby contributing to pathogenesis13.

Despite known variations in the quantity and quality of antibody
responses based on disease severity, the antibody dynamics that predict
COVID-19progression (i.e., survival or death) are still unclear.Most studies
typically measure antibody responses in serum or plasma, but mucosal
immunity to SARS-CoV-2, either in respiratory or oral fluid samples, may
provide a better correlate of protection. Using a longitudinal cohort at Johns
Hopkins Hospital, we analyzed antibody responses in plasma and mucosal
samples, measured proinflammatory cytokines and chemokines in plasma,
and determined the associations of keydemographic variables and antibody
responses at enrollment with COVID-19 outcomes. Using machine learn-
ing algorithms, we identified that serological variables, particularly anti-
neucleocapsid (N) IgG titer, and anti-S complement C1q, are better pre-
dictors of intubation or death in COVID-19 patients, than socio-
demographic variables.

Methods
Study cohorts
A convenience sample of hospitalized (n = 105) and non-hospitalized
(n = 73) patients were enrolled in a prospective cohort study from April
2020 throughApril 2021 (Table 1). This study, including its recruitment and
consenting process, was approved by the Institutional Review Board (IRB)
of the Johns Hopkins University (IRB00245545, IRB00259948)14–16. Non-
hospitalized individuals were screened and read an oral consent script over
the phone for eligibility, during which research personnel ensured the
participants understood the purpose and procedures of the study and
recorded their verbal statement of consent.Whenenrolledparticipantswere
sent a study kit, a copy of the consent script was included. For hospitalized
patients, written consent was obtained from all hospitalized participants.
The study comprised Johns Hopkins Hospital in- or out-patients who were
18 years or older with reference lab RT-PCR-confirmed SARS-CoV-2
diagnosis. Blood plasma samples were collected from non-hospitalized
patients at one-month post-enrollment (MPE). For non-hospitalized
patients, days from enrollment were calculated by taking the date of the
positive PCR test (considered as enrollment) relative to the date of each
sample collection. For hospitalized patients, the days from enrollment were
calculated by taking each sample collection date relative to the first sample
collection date collected upon hospital admission for each patient. The
enrollment timepoint was set as 0 days post-enrollment. Hospitalized
samples collected 21–28 days after the initial enrollment sample collection
were used for the 1MPE timepoint. Samples from hospitalized patients at 1
MPE were collected on average 28 ± 11 days after PCR confirmation and
26 ± 3 days after hospital enrollment. The 1 MPE for non-hospitalized
patients ranged between 18 to 91 days after PCR-confirmation, averaging
46 ± 15 days. Non-hospitalized samples used for 1 MPE analysis was
restricted to samples collected within 31- and 61-days post-PCR con-
firmation based on the mean ± SD days post-PCR. Antibody levels were
comparable among non-hospitalized patients within this time frame
(Supplementary Fig. 1a-b). Blood plasma samples were collected from
hospitalized patients at study enrollment, 1 MPE, and until subsequent
death or up until 100 days post-enrollment (DPE) (Supplementary
Fig. 1c, d). Oropharyngeal (OP) and nasopharyngeal (NP) swab samples

were collected at enrollment for all hospitalized patients. Non-hospitalized
patients were assigned World Health Organization (WHO) COVID-19
severity scores of 1–2, and moderate, severe, and deceased hospitalized
COVID-19 patients were assigned WHO scores of 3–4, 5–7, and 8,
respectively (Supplementary Table 1). For hospitalized patients, the severity
scores used were the maximum severity scores during their hospital stay.
Samples were processed on the same day of collection and stored at−80 °C
until the time of the biological assays.

Virus RNA levels
SARS-CoV-2 RT-PCR testing was performed on OP or NP swab samples
using Abbott m2000 platform and Abbott RealTime SARS-CoV-2 assay
(09N77-095, Abbott Molecular, IL, USA) per the manufacturer’s
instructions16,17. SARS-CoV-2 viral RNA levels (copies/mL) were calculated
from qPCR Ct values using the standard curve.

SARS-CoV-2 variant inference
A likely variant of SARS-CoV-2 was inferred for each patient using the date
of sample collectionand the timeframeof variants duringwhichcommunity
prevalence was above 95% according to Robinson, et al.18. The ancestral
variant was prevalent from January 18, 2021, to July 31, 2021.

Cytokine/chemokine detection
Plasma proinflammatory cytokines and chemokines weremeasured using a
custom multiplex kit from Meso Scale Discovery (MSD; Rockville, MD)
according to the manufacturer’s instructions15,19. Cytokine and chemokine
data were first shifted by a pseudo count of+1 to avoid zeros and then log2-
transformed to have normal distributions. Analytes with signal below the
background were set to 0 and lower limits of detection were based on the
manufacturer’s recommendations.

Binding antibody measurement by ELISA on plasma samples
Binding antibodies in plasma samples were determined using in-house
ELISAs9,20,21. The 96-well plates (Immulon 4HBK,ThermoFisher Scientific)
were coatedovernight at 4 °Cwith 50 µLof 2 µg/mLof either Spike (S), spike
receptor binding domain (S-RBD), or 1 µg/mL of nucleocapsid (N) antigen
diluted in 1X phosphate-buffered saline (PBS). Antigens were either engi-
neered at JohnsHopkinsUniversity9 or were obtained through theNational
Cancer Institute Serological Sciences Networks (SeroNet) for COVID-1922.
Plates were washed 3 times with 200 µL of wash buffer (PBS with 0.1%
Tween-20) and thenblockedwith 3%milk powder inPBSwith 0.1%Tween-
20 (PBS-T) for 1 h at room temperature (RT). Heat-inactivated plasma
samples were three-fold serially diluted 10 times, starting with 1:20 dilution
in dilution buffer (1% milk + 0.1% PBS-T). The blocking buffer was
removed and100 µLof dilutedplasma sampleswere transferred. Plateswere
incubated for 2 h atRT,washed, and50 µLof anti-humanHRP IgG (1:5000,
#A18823, Invitrogen, Thermo Fisher Scientific), IgA (1:5000, #A18787,
Invitrogen, Thermo Fisher Scientific), IgG1 (1:4000, #9054-05, Southern
Biotech), IgG2 (1:4000, #9060-05, Southern Biotech), IgG3 (1:4000, #9210-
05, Southern Biotech) or IgG4 (1:8000, #9200-05, Southern Biotech) sec-
ondary antibodywas added. After 1 h incubation at RT, plates werewashed,
and 100 µL of Sigmafast OPD (o-phenylenediamine dihydrochloride)
solution (MilliporeSigma) was added. After 10minutes of incubation at RT,
the reaction was stopped by adding 50 µL of 3M HCL (Thermo Fisher
Scientific) and the plateswere read forODvalues at 490 nmwavelength on a
SpectraMax i3 ELISA plate reader (BioTek Instruments). Background-
subtracted optical density values were plotted against the dilution factor to
calculate the area under the curve (AUC). Spike and N IgG antibodies were
converted into the international binding assay units (BAU/mL) using the
standards calibrated at the Johns Hopkins University through the SeroNet
assay harmonization project22. AUC and BAU/mL values were log-
transformed for analysis. The limit of detection (LOD) was determined as
half of the lowest BAU for the sample with a detectable titer (i.e., titer ≥20),
while samples with undetectable titers (i.e., <20) received a value that was
half the limit of detection20.

https://doi.org/10.1038/s43856-024-00658-w Article

Communications Medicine |           (2024) 4:249 2

www.nature.com/commsmed


ACE2 binding inhibition antibody assay
ACE2 binding inhibition antibody assay was performed using MSD
V-PLEX SARS-CoV-2 ACE2 kits (Panel 29) according to the manu-
facturer’s protocol20. Antigen pre-coated plates were washed and incubated
with plasma samples (1:100 dilution) for 1 h followed by the addition of
SULFO-TAG conjugated human ACE2 protein for 1 h at RT. After incu-
bation, plates were washed, buffer was added, and plates were read with a
MESO QuickPlex SQ 120 instrument. ACE2 binding inhibition activity
corresponding to 1 µg/mL ofmonoclonal antibody to the ancestral strain of
SARS-CoV-2 S protein was determined using an 8-point calibration curve
included in each plate. Percent inhibition was determined based on the
equation ([1 – average sample electrochemiluminescence/average electro-
chemiluminescence signal of blank well] × 100) provided by the
manufacturer.

Complement activation assay
Complement activation assays were performed from plasma samples as
described23 with modifications. Nunc MaxiSorp flat-bottom 96-well plates
were coated with 100 ng/well of S, S-RBD, or PBS alone. After overnight
incubation, plates were washed with 0.1% PBS-T and blocked with 1%
gelatin/PBS-T for 1 h at RT. 100 µL of heat-inactivated patient plasma
diluted at 1:1000 in 1%gelatin/PBS-Twere added to thewells and incubated
for 1 h at RT. After washing with PBS-T, normal human serum (NHS,
Comptech) at 1:50 dilution in gelatin veronal buffer with calcium and
magnesium (GVB++, Comptech) was added as the complement source. To
remove any background anti-spike IgG response, total IgG was removed
from NHS source. NHS was diluted 1:50 in GVB++ and incubated with
increasing amounts of PureProteome protein A/G mix magnetic beads
(Millipore) for 1 h at 4 °C with continuous mixing. Total IgG and anti-S
background antibodies were fully removed, without affecting complement
activity, using 50 µL beads per 300 µL of diluted NHS. After 1 h incubation
with NHS at 37 °C, wells were washed with PBS-T, and goat anti-human
C1q (Comptech, A200) diluted 1:20,000 in PBS-T was added for 1 h at RT.
HRP-labeled anti-goat IgG (Thermo Fisher Scientific, A16005) diluted
1:5000 in PBS-T was used as secondary antibody and incubated for 1 h at
RT. Following addition of SureBlue peroxidase reagent (IPL), reactionswere

stopped with HCL and absorbances were read at 450 nm. Arbitrary units
(AU) were calculated using a standard minus background binding to PBS-
coated wells.

Antibody-dependent cell-mediated cytotoxicity (ADCC) assays
The spike-expressing cell lines were generated by transfecting Tet-on
HEK293 (ATCC, CRL-1573) cell lines with Sleeping Beauty-based trans-
posons designed to express (a) PuroR antibiotic resistance gene and (b) one
or another form of the SARS-CoV-2 spike protein24. Cell line identity was
confirmed by anti-spike immunoblot of cells grown in the absence or pre-
sence of doxycycline, andbydiagnostic PCRbutnomycoplasma testingwas
performed. Tet-onHEK-293 cells engineered to expressWuhan-1 S protein
(hereafter HtetZ/SW1 HEK293 cells)24 in response to doxycycline (DOX)
were incubated overnight with 1 µg/mL DOX in DMEM containing 10%
fetal bovine serum (FBS), 1% penicillin/streptomycin (P/S), zeocin (200 µg/
mL) and puromycin (3 µg/mL). HtetZ/SW1 HEK-293 cells were detached
with trypsin/EDTA, resuspended at 2 × 106 cells/mL in Iscove’s Modified
Dulbecco’s Medium (IMDM) (10% FBS and 1% P/S). ADCC assays were
performed in 96-well round bottom plates by incubating 50 µL HtetZ/SW1
HEK-293 cells with 1 µg of IgG purified from patient plasma (Melon Gel
SpinPlateKit, ThermoFisher Scientific).After 30-minutes at 37 °C, 50 µLof
Jurkat-LuciaTM NFAT-CD16 cells (InvivoGen) at 4 × 106 cells/mL were
added per well (effector: target ratio 2:1), mixed and centrifuged for 1-
minute, at 800 rpm. After 5-h incubation at 37 °C, 20 µL of supernatant was
collected andmixed with 50 µL of QuantiLucTM solution (InvivoGen) in a
96-well black polystyrene plate (CorningCostar) to assess luciferase activity.
A pool of high titer anti-S IgG purified from patient plasma was used to
generate a standard curve to calculate the unknown sample AU and cali-
brate across plates.

Flow cytometry
Spike surface expression forADCCassayswas confirmed byflow cytometry
using commercial SARS-CoV-2 2019-nCoV spike S2 antibody (Sino Bio-
logical 40590-D001) and using purified IgG from anti-S positive patient
plasma (n = 3; Supplementary Fig. 2). 50 µL of 500,000 HEK293 cells
(HtetZ/CG145 (SpikeW1)HEK293orHtetZHEK293)were resuspended in

Table 1 | COVID-19 patient demographics and comorbidities at enrollment

COVID-19 severity category

Non-Hospitalized (1–2) Hospitalized-Moderate (3–4) Hospitalized-Severe (5–7) Hospitalized-Deceased (8) Total

Sex (n, %)

Female 46 (63%) 18 (44%) 20 (50%) 10 (41.7%) 94 (53%)

Male 27 (37%) 23 (56%) 20 (50%) 14 (58.3%) 84 (47%)

Race/Ethnicity (n, %)

White 36 (49%) 12 (29%) 14 (35%) 4 (17%) 66 (37%)

Black 23 (32%) 21 (51%) 20 (50%) 12 (50%) 76 (43%)

Asian 1 (1%) 1 (2%) 1 (2.5%) 1 (4%) 4 (2%)

Other 13 (18%) 6 (15%) 5 (12.5%) 7 (29%) 31 (17%)

N/A 0 (0%) 1 (2%) 0 (0%) 0 (0%) 1 (1%)

Age, mean (SD) 51 (15) 54.7 (13.6) 58.15 (12.1) 62.3 (12.3) 55 (13.9)

BMI, mean (SD) 31.4 (8.8) 31.5 (6.9) 32.3 (8.9) 33.5 (10.1) 32 (8.6)

Intubated (n, %) 0 (0%) 0 (0%) 24 (60%) 24 (100%) 48 (27%)

HIV (n, %) 2 (3%) 3 (7%) 1 (3%) 1 (4%) 7 (4%)

Pulmonary disease (n, %) 22 (30%) 10 (24%) 12 (30%) 6 (25%) 50 (28%)

Diabetes (n, %) 11 (15%) 17 (41%) 16 (40%) 10 (42%) 54 (30%)

Autoimmune disease (n, %) 8 (11%) 5 (12%) 4 (10%) 1 (4%) 18 (10%)

Cancer (n, %) 8 (11%) 14 (34%) 9 (23%) 7 (29%) 38 (21%)

Organ Transplant (n, %) 3 (4%) 3 (7%) 4 (10%) 1 (4%) 11 (6%)

Total 73 (41%) 41 (23%) 40 (22%) 24 (13%) 178 (100%)
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staining solution (PBS with 2% fetal bovine serum) and incubated with
either Sino Biological 40590-D001 (1:500 dilution) or anti-Spike Positive
Patient Plasma (aS PPP) purified IgG (10 µg/mL and 40 µg/mL con-
centrations) for 30min on ice in the dark. The cells were then washed twice
with staining solution and incubated for 30min with the respective sec-
ondary antibodies (BV421 anti-mouse IgG Ab, Biolegend 405317; AF488
anti-human IgG Ab, ThermoFisher A11013, all at 2 µg/mL concentration).
Afterwards, the cells were washed twice and resuspended in 500 µL of
staining solution. The counts of BV421-labeled SB40590 or AF488-labeled
aS PPP IgG cells were measured using the BD FACSAria II Cell Sorter
(Supplementary Table 3) and analyzed with Kaluza Analysis software ver-
sion 2.2.1 and Inkscape.

Multiplex antibody assays on mucosal samples
IgG and secretory IgA (sIgA) antibody responses onNP andOP swabswere
determined using multiplex SARS-CoV-2 antibody assays25–27. The SARS-
CoV-2 multiplex assay included two SARS-CoV-2 N antigens, two S, three
S-RBD antigens, endemic coronavirus OC43, NL63, HKU1 and 229E
antigens, respiratory syncytial virus (RSV), and several control beads (total
IgG, IgA, IgM, BSA). Mucosal samples were added to the assay buffer (PBS
with 0.05% Tween 20 and 0.1% BSA) containing 1000 beads per bead set in
eachwell of a 96-well plate.NPandOPswabswere tested at a 1:2 dilution for
IgG and a 1:4 for sIgA. After a 1 h sample incubation beads were washed
twice, then phycoerythrin (PE)-labeled anti-human IgG or mouse anti-
secretory component antibody, followed by PE-labeled anti-mouse anti-
body was added. After another 1-h incubation beads were washed twice
again and then read on a MagPix.

Statistics and reproducibility
All antibodies (i.e., mucosal and serum antibodiesmeasured as either AUC,
BAU/mL, AU, or MFI) and virus RNA (copies/mL) data were log10-
transformed. To account for possible zeros, complement and ADCC data
(AU) were shifted by +1 prior to logarithmic transformation. ACE2 inhi-
bition data (%) were arcsine transformed to be more consistent with the
Gaussian assumptions used in analyses. Non-hospitalized and hospitalized
serological data at 1 MPE were compared using linear regression analysis,
controlling for biological sex and age. The null hypotheses that hospitali-
zation groupmeanswere equal at each time point were tested usingWelch’s
ANOVA with Benjamini-Hochberg post-hoc corrections at a 0.1 false
discovery rate (FDR). Spearman correlation was used to quantify the
association of viral load between nasal and oral samples and the association
of complement C1q with binding antibodies. Linear mixed-effects regres-
sion modeling was used to compare antibody trajectories over days from
enrollment across COVID-19 disease severity groups among hospitalized.
The results were visualized by plotting the estimated fixed effects against
days since enrollment for different severity groups. The null hypothesis that
all groups had the same dependence on time was tested using a likelihood
ratio test comparing mixed effects models with and without the group by
time interaction. Binding, complement, andACE2 inhibition antibody data
were scored by quartiles from 0 to 3 with data in the lower 25th percentile
scored as 0 and those in upper 75th percentile scored as 3. Data were then
totaled by antibody type (e.g., anti-N IgG, anti-S IgG, anti-S-RBD IgG, and
anti-S-RBD IgA quartile scores were totaled by participant for an overall
binding antibody score) to create an index score. Logistic regressionmodels,
with death as the binary outcome, were used against antibody scoring to
evaluate how antibody levels were associatedwith the probability of death at
enrollment or 1MPE. From the enrollment data, complete datasets without
missing data were available for 98 hospitalized patients for 24 variables.We
implemented two approaches for random forest modeling—one using out-
of-bag (OOB) predictions without data partitioning and another using
stratified 10-fold cross-validation with data partitioning of 90% for training
and 10% for testing. Random forest algorithms were used to compare the
predictive power of sociodemographic (i.e., age, BMI, race/ethnicity, sex,
and clinical comorbidities) and serological variables for intubation or death
as represented by the variable importance plots. The performance of

random forest models was assessed using the area under the receiver
operating characteristic curves (AUROC) for out-of-bag predictions
(OOB)28 or 10-fold cross-validation predictions. Sensitivity (true positive),
specificity (truenegative), error rates, andF1 scoreswere calculatedbasedon
the confusion matrix at a probabilistic cutoff of 0.46 and 0.21 for the intu-
bation and death models, respectively. Random forest models using only
demographic, serological, or both types of measures were compared by
AUROC metrics. AUROC values closer to 1 indicate a higher quality of
model performance with a more accurate classification of the data. All
random forest models were trained using the same seed value to ensure
reproducibility. randomForest, caret, ROCR,MLmetrics, and pdp packages
in R were used for the random forest modeling, calculating variable
importance scores, evaluating performance metrics, and visualizing
dependence plots29–33. All p-values < 0.05 were considered statistically sig-
nificant. Statistical analyses were conducted in Stata 18.0, GraphPad Prism
10, and RStudio 2022.7.2.57634,35.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Demographic characteristics of the COVID-19 study cohorts
A total of 73 (46 female; 27 male) non-hospitalized and 105 (48 female; 57
male) hospitalized COVID-19 patients were included (Table 1). Out of the
hospitalized patients, 41 (18 female, 23 male) were in the WHO moderate
disease category, 40 patients (20 female; 20 male) were in the severe disease
category, and 24 patients (10 female; 14 male) were deceased. For non-
hospitalized patients, samples were collected for the ‘1 MPE’ timepoint at
46 ± 15 days and neither anti-N IgG nor anti-S IgG responses correlated
with the number of days post-enrollment (Supplementary Fig. 1a, b).
Sample collection from hospitalized patients at the 1 MPE timepoint
averaged at 28 ± 11 days after PCR confirmation and 26 ± 3 days after
hospital enrollment (Supplementary Fig. 1c, d). The number of days from
hospital enrollment to death among the deceased cohort ranged between 3
to 261 days, with 75% of those dying from COVID-19 within 66 days of
enrollment (Supplementary Fig. 1e). For longitudinal analyses and pre-
dictive modeling, data from hospitalized patients who died within 100 DPE
(n = 18) were included.

Proinflammatory cytokine/chemokine, but not viral RNA, levels
at enrollment are greater among hospitalized patients withmore
severe COVID-19
Virus RNA quantification was performed in OP and NP swabs collected
from the hospitalized patients during enrollment. Viral RNA copy numbers
didnot differ amongmoderate, severe, anddeceasedpatients in eitherNPor
OP swab samples (p > 0.05, Fig. 1a, b. Virus RNAlevels inOP andNPswabs
were positively correlated (SpearmanR = 0.659, p = 0.0012, Fig. 1c). During
enrollment, inflammatory cytokine/chemokine response levels in plasma
were compared among hospitalized patients with different COVID-19
disease severities (Supplementary Table 2). Consistent with previous
reports36,37, patients with severe disease (WHO score 5–7) or those who
subsequently died from COVID-19 (WHO score 8) had greater con-
centrations of proinflammatory cytokines and chemokines, including IL-6,
IL-8, TNF-α, IL-15, IL-16, and MCP-1, than hospitalized patients with
moderate disease (WHO score 3–4) (p < 0.05 in each case, Fig. 1d–i).

COVID-19 disease severity is not associated with mucosal anti-
body responses in hospitalized patients
Using the OP and NP swab sample viral transport media collected during
hospital enrollment, ancestral SARS-CoV-2 N- and S-specific IgG and
secretory IgA (sIgA) antibody responses were measured. Binding antibody
responses in mucosal samples against ancestral viral antigens did not differ
based on COVID-19 disease severity among hospitalized patients (p > 0.05
in each case, Fig. 2a–h). The sIgA (Supplementary Fig. 3a–f) and IgG
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(Supplementary Fig. 4a–f) responses also were measured against other beta
coronaviruses, includingSARS,MERS,HCoV, andOC43, in theNPandOP
swab samples and were not significantly different among moderate, severe,
and deceased patients in both OP and NP compartments. These data sug-
gest mucosal antibody responses against SARS-CoV-2 do not differ by
COVID-19 severity.

Antibody responses are higher among hospitalized than non-
hospitalized COVID-19 patients at 1 MPE
Using plasma samples collected at 1MPE, we compared antibody binding
(i.e., anti-S IgG, anti-S-RBD IgG, anti-S-RBD IgA, and anti-N IgG), ACE2
binding inhibition, and Fc effector antibody responses (i.e., complement
activation and ADCC) between non-hospitalized and hospitalized
patients. Binding antibodies (Fig. 3a–d) were significantly higher
(p < 0.05) among hospitalized patients than non-hospitalized patients at 1
MPE. Likewise, ACE2 binding inhibition antibody responses were sig-
nificantly higher among hospitalized than non-hospitalized patients
(p = 0.000, Fig. 3e). The Fc effector antibody functions, including com-
plement activation as measured by C1q binding to surface-bound anti-S
and anti-S-RBD antibodies (hereafter anti-S C1q and anti-S-RBD C1q,

respectively), and ADCC, were significantly higher (p < 0.05 in each case)
in hospitalized than non-hospitalized patients (Fig. 3f–h). Neither the
reported sex (Supplementary Fig. 5) nor age (Supplementary Fig. 6) of the
patients impacted binding, ACE2 binding inhibition, or Fc effector anti-
body responses among either non-hospitalized or hospitalized patients at
1 MPE in this cohort. Consistent with previous findings9,10, people who
required hospitalization for acute COVID-19 had higher antibody
responses at 1 MPE than patients who did not require hospitalization
(Fig. 3, Supplementary Figs. 5–6).

COVID-19 disease severity is correlated with plasma antibody
responses over time until death or 100 DPE
Binding and ACE2 binding inhibition antibodies were measured in plasma
samples from hospitalized patients, collected at hospital enrollment and
through subsequent death or 100 DPE. During enrollment, anti-S IgG, but
not anti-S-RBD IgG, anti-S-RBD IgA, anti-N IgG, nor ACE2 binding
inhibition antibody responses, were significantly higher among patients
with severe compared to moderate disease (p = 0.007, Fig. 4a–e). After 1
MPE, anti-S IgG (Fig. 4a), anti-S-RBD IgG (Fig. 4b), and ACE2 binding
inhibition (Fig. 4e) antibody responses significantly increased over time

Fig. 1 | SARS-CoV-2 virus RNA and cytokine/chemokine responses among
hospitalized COVID-19 patients at enrollment. aNasopharyngeal (NP) viral load
(copies/mL, log10) and (b) oropharyngeal (OP) viral load (copies/mL, log10) were
measured by qPCR at enrollment and compared among patients classified as
moderate (WHO score 3–4), severe (WHO score 5–7), or deceased (WHO score 8).
c The Spearman correlation between OP and NP viral loads at enrollment.

d–i Concentrations (pg/ml) of several proinflammatory cytokines and chemokines
that differed among COVID-19 hospitalized patients classified as moderate, severe,
or deceased. Data are presented as means with standard deviations, indicated by
error bars. p-values for statistically significant differences (p < 0.05) by Welch’s
ANOVA are shown in the figures.
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Fig. 2 | Mucosal antibody responses among hospitalized COVID-19 patients at
enrollment. a–d Anti-nucleocapsid (N) and anti-spike (S) secretory IgA or (e–h)
IgG responses were measured as median fluorescence intensity (MFI) in naso-
pharyngeal (NP) or oropharyngeal (OP) samples and compared among COVID-19

hospitalized patients classified as moderate (WHO score 3–4), severe (WHO score
5–7), or deceased (WHO score 8). Data are analyzed using Welch’s ANOVA and
presented as means with standard deviations, indicated by error bars.
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Fig. 3 | Antibody responses in plasma samples of non-hospitalized and hospi-
talized COVID-19 patients at 1-month post-enrollment (MPE). a–d IgG binding
antibody responses against ancestral spike (S), spike receptor binding domain (S-
RBD), and nucleocapsid (N) were quantified by ELISA and calculated as the binding
antibody units (BAU) per ml if international standards were available or as the area
under the curve (AUC) if standards were not available and titration curves only
could be generated; (e) ACE2 binding inhibition antibodies were measured using
MSD V-PLEX SARS-CoV-2 ACE2 kits; and (f–h) Fc effector antibody responses

were quantified using complement fixation and antibody-dependent cellular cyto-
toxicity (ADCC) assays. All assays were run using ancestral SARS-CoV-2. Data were
compared using linear regression analysis, controlling for age and biological sex, to
look at differences between unvaccinated non-hospitalized and hospitalized patients
at 1 MPE. Data are presented as means with standard deviations, indicated by error
bars. The limit of detection (LOD) is indicated by the dashed lines. p-values for
statistically significant differences (p < 0.05) are shown in the figures.
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(p < 0.05 in each case) among all hospitalized patients, with the deceased
patients consistently maintaining the highest antibody responses. Anti-N
IgG responses increased at 1 MPE among both severe (p = 0.018) and
moderate (p = 0.02) disease patients but did not change among deceased
patients (p = 0.06, Fig. 4c). Among hospitalized patients with severe disease
or dying from COVID-19, anti-S-RBD IgA (Fig. 4d) increased over time

since enrollment. At 1 MPE, patients who died from COVID-19 had sig-
nificantly greater anti-S-RBD IgA response than patients with moderate or
severe disease (p < 0.05 in each case). Unlike ancestral SARS-CoV-2
(Fig. 4e), ACE2 inhibition antibodies against SARS-CoV-2 variants were
comparable among hospitalized patients with varying severities of disease
(Supplementary Fig. 7).
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Because subclasses of IgG have different antibody effector functions,
subclasses of IgG recognizing SARS-CoV-2 Swere analyzed. At enrollment,
anti-S IgG2 and IgG3 were significantly higher among either deceased or
severe disease patients than moderate disease patients (Fig. 5). From
enrollment to 1 MPE, anti-S IgG1 and IgG3 levels significantly increased
among all hospitalized patients, whereas anti-S IgG2 and IgG4 only
increased over time among patients with moderate disease or those who
died from COVID-19.

Because differential Fc effector antibody functions that mediate com-
plement and innate immune cell activation can contribute to COVID-19
pathology38–40 and predict symptoms of long COVID6, anti-S C1q, anti-S-
RBD C1q, and ADCC were measured using antibodies from plasma sam-
ples collected from hospitalized patients at enrollment and 1 MPE
(Fig. 4f–h). At enrollment, anti-S C1q and anti-S-RBDC1q (Fig. 4f, g) were
significantly lower (p < 0.05) in the patients who died from COVID-19
compared to hospitalized patients with severe disease. In contrast, ADCC
responses were not significantly different among moderate, severe, and
deceased patients (Fig. 4h). Only deceased COVID-19 patients had a sig-
nificant increase in anti-S C1q (p = 0.007, Fig. 4f) and anti-S-RBD C1q
activities (p = 0.001, Fig. 4g) over time, from enrollment to 1 MPE. There
was a significant increase in ADCC responses from enrollment to 1MPE in
patients with either severe disease (p = 0.044) or who died fromCOVID-19
(p = 0.032, Fig. 4h). The complement activity was primarily mediated by
IgG rather than IgM antibodies as shown by the stronger correlation of
complementwith IgG than IgM(SupplementaryFig. 8a–h). IgMantibodies,
however, were better correlated with complement activity among hospita-
lized than non-hospitalized patients. Anti-S IgG1 and IgG3, but not anti-S
IgG2 or IgG4, strongly correlated with anti-S C1q and anti-S-RBD C1q
among hospitalized patients (Supplementary Fig. 8i–p).

With consideration of the antibody kinetics from days since enroll-
mentuntil eitherdeathor 100DPEamonghospitalizedCOVID-19patients,
anti-S IgG, anti-S-RBD IgG, anti-N IgG, anti-S-RBD IgA, and ACE2
binding inhibition (Fig. 6a–e) were maintained at higher levels over time
among deceased patients as compared to other hospitalized patients. Fc
effector activities, including complement activation and ADCC, exhibited
no changes over time among hospitalized patients (Fig. 6f–h).

Predictive value of plasma antibody titer as a biomarker for
COVID-19-related death among hospitalized patients
We sought to understand the predictive value of antibody titers as a bio-
marker for subsequent death from COVID-19 among hospitalized patients
(Fig. 7a–h). A cumulative antibody score was calculated by first dividing
each antibodymeasure into quartiles with assigned scores of 0 to 3, ranging
from the lowest quartile to the highest quartile, and totaled across the
measures by type of response (e.g., binding antibody index score is the sum
of the quartile scores across anti-N IgG, anti-S IgG, anti-S-RBD IgG, and
anti-S-RBD IgA). Using logistic regressionmodeling with death as a binary
outcome against antibody scoring, greater cumulative binding antibody
scores at 1 MPE were associated with an increased probability of death due
to COVID-19 (p = 0.045; Fig. 7e), which was not observed at enrollment
(p = 0.39; Fig. 7a). Similarly, a positive, but not statistically significant,
association between the probability of death and ACE2 binding inhibition
antibody scoring was observed at 1 MPE (p = 0.17; Fig. 7f), but not at
enrollment (p = 0.508; Fig. 7b). The ability of anti-S antibodies to induce

ADCCat either enrollment (p = 0.87; Fig. 7c) or at 1MPE (p = 0.94; Fig. 7g)
was not associated with death from COVID-19. Antibody-induced com-
plement activation during enrollment (p = 0.014; Fig. 7d), but not at 1MPE
(p = 0.75; Fig. 7h), was negatively associated with the probability of death
due to COVID-19. Logistic regression models cannot establish a causative
relationship between binding antibody levels or complement with sub-
sequent death outcomes among hospitalized patients, but rather demon-
strate an association that should be further investigated.

Random forest models were used to evaluate sociodemographic (e.g.,
age, sex, BMI, race/ethnicity), clinical comorbidities, and serological mea-
sures at enrollment as predictors of subsequent intubation or death among
hospitalized patients. Using complete data from 98 hospitalized patients
(n = 45 intubated and n = 21 with subsequent death), the intubationmodel,
comparinghospitalizedpatientswhowere intubatedornot, had anAUROC
value of 0.74 (Supplementary Fig. 9) and, similarly, themodel for death had
an AUROC value of 0.70 (Supplementary Fig. 10). For both intubation and
death models, anti-N IgG antibodies and anti-S antibody-mediated com-
plement fixation (anti-S C1q) were consistently prioritized as top variables
that predicted intubation or death with the greatestmean decrease accuracy
according to variance importance plots (Fig. 7i, j). Partial and bivariate
dependence plots revealed that higher anti-N IgG titers and lower anti-S-
mediated complement activation at enrollmentwere associatedwith greater
predicted probabilities of intubation or death when controlling for all other
variables (Supplementary Figs. 9–10). For the intubationmodel, anti-N IgG
titers rankedfirst, anti-S IgG4 titers ranked second, anti-SC1q ranked third,
and BMI ranked fourth for predictive ability and were the top variables
necessary for accurately classifying patients as intubated based on enroll-
ment data in our model (Fig. 7i). For death from COVID-19, anti-S C1q
ranked first, anti-N IgG titer ranked second, anti-S-RBD C1q ranked third,
and anti-S IgG titer ranked fourth for predictive ability (Fig. 7j). To further
confirm these findings, we ran random forest models with either only
sociodemographic variables or serological variables. The AUROC value for
the random forest intubation model with only sociodemographic variables
(0.55)wasmuch lower than that of the random forest intubationmodelwith
only serological variables (0.68), indicating that performance of random
forestmodels with only sociodemographic variables is inferior to those with
serological measures in our cohort. Similarly, the stratified 10-fold cross-
validation random forest models, including serological and socio-
demographic variables, for intubation or death prioritized anti-N IgG and
anti-S C1q as the top variables necessary for hospital outcome classification
with AUROC values of 0.78 and 0.75, respectively (Supplementary Fig. 11).
The models including serological variables consistently performed better
compared to the models with only sociodemographic variables (Supple-
mentary Fig. 11). Overall, our models suggest that serological variables,
particularly anti-N IgG titer, and anti-S C1q, were better able to classify
patients with subsequent intubation or death compared to socio-
demographic variables.

Discussion
In the current study, patients who became severely ill or died fromCOVID-
19 consistently maintained greater antibody responses compared to hos-
pitalized patients with moderate disease or non-hospitalized patients. We
utilized samples collected from peripheral blood and mucosal sites to ana-
lyze over 20 different antibody characteristics, including diverse antibody

Fig. 4 | Binding, ACE2 inhibition, and Fc effector antibody responses in plasma
among COVID-19 hospitalized patients at enrollment and 1-month post-
enrollment (MPE). The binding (a–c) IgG and (d) IgA antibodies recognizing
ancestral SARS-CoV-2 spike (S), spike receptor binding domain (S-RBD), or
nucleocapsid (N) were quantified by ELISA, and measured as the binding antibody
units (BAU) permL if international standards were available or as the area under the
curve (AUC) if standards were not available and titration curves could only be
generated. e The percentage of ACE2 inhibition for the ancestral SARS-CoV-2
variant was calculated and arcsine transformed for analyses. f–h The Fc effector
antibody responses were measured based on C1q complement fixation in response

to either the spike or S-RBD or antibody dependent cellular cytotoxicity and
reported as arbitrary units (AU). Antibody responses were compared among
COVID-19 hospitalized patients classified as moderate (WHO score 3–4), severe
(WHOscore 5–7), or deceased (WHO score 8) using samples collected at enrollment
vs. 1 MPE. Data are presented as means with standard deviations, indicated by error
bars. p-values for statistically significant differences (p < 0.05) by linear mixed-
effects regression to compare change over time or Welch’s ANOVA to compare
across groups within a time point are indicated. Limit of detection (LOD) are
indicated by the dashed lines.
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Fig. 5 | Analysis of anti-Spike (S) IgG subclasses (IgG1-4) among hospitalized
COVID-19 patients at enrollment and 1-month post-enrollment (MPE). The
binding of IgG1 (a), IgG2 (b), IgG3 (c), and IgG4 (d) to ancestral SARS-CoV-2 S
antigen was measured as the area under the curve (AUC). Spearman correlation of
IgG1 (e), IgG2 (f), IgG3 (g), and IgG4 (h) with % ACE2 inhibition at enrollment.
Hospitalized COVID-19 patients were classified as moderate (WHO score 3–4),

severe (WHO score 5–7), or deceased (WHO score 8). Data are presented as means
with standard deviations, indicated by error bars. The limit of detection (LOD) is
indicated by the dashed lines. p-values for statistically significant differences
(p < 0.05) by linearmixed-effects regression to compare change over time orWelch’s
ANOVA to compare across groups within a time point are indicated.
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Fig. 6 | Antibody responses against ancestral SARS-CoV-2 over continuous days
since enrollment until 100 days post-enrollment (DPE) or subsequent death
among hospitalized COVID-19 patients. Linear mixed-effects regression models
for (a–d) anti-spike (S), anti-spike receptor binding domain (S-RBD), or anti-
nucleocapsid (N) IgG or IgA, measured as the binding antibody units (BAU) per ml
if international standards were available or as the area under the curve (AUC) if
standards were not available and only titration curves could be generated; (e) the

percentage ACE2 inhibition against ancestral SARS-CoV-2 as a surrogate of virus
neutralization, and (f–h) Fc effector antibody responses as measured by comple-
ment fixation against spike or S-RBD or antibody-dependent cellular cytotoxicity
(ADCC) up until 100 DPE or death among hospitalized patients classified as
moderate (WHO score 3–4; n = 41), severe (WHO score 5–7; n = 40), or deceased
(WHO score 8; n = 24). P-values for statistically significant differences (p < 0.05) by
linear mixed-effects regression contrasts are shown within the figures.
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isotypes, virus-neutralizing responses, and non-neutralizing activities,
against multiple SARS-CoV-2 epitopes to provide a deep interrogation of
the antibody landscape in a cohort of COVID-19 patients. Using machine
learning algorithms, we identified the characteristics of the antibody land-
scape that could predict whether a patient would succumb to or recover
from COVID-19.

Systemic complement activation and the ability of anti-S antibodies to
induce ADCCwere determinants of COVID-19 severity38–41. In our cohort,
hospitalized patients consistently had higher levels of antibody-mediated
complement activation, as measured by C1q of the classical pathway,
compared to non-hospitalized patients. Among the hospitalized patients,

anti-S and anti-S-RBD antibody-mediated complement activation was
lower in thosewhodied compared to thosewho recovered fromCOVID-19.
Weexpected that Fc-mediated antibody functionswould increase like anti-S
and anti-S-RBD antibody titers among patients hospitalized with more
severe COVID-19. In contrast, among patients with progressively wor-
seningdisease, antibodies to SARS-CoV-2had a reducedcapacity to activate
complement andADCC,which could contribute to a reduced ability to clear
the virus. The role of complement activation in COVID-19 disease severity
remains understudied. Recently, Cervia-Hasler, et al. 6 reported that severely
ill patients had similar levels ofC7 complexes compared tomildly ill patients
during active acuteCOVID-19, but amongpatientswithactive longCOVID

Fig. 7 | Logistic regression of COVID-19 death by indexed antibody variables
among hospitalized COVID-19 patients at enrollment and 1-month post-
enrollment (MPE). Logistic regression modeling for death among hospitalized
COVID-19 patients by indexed scores based on quartiles of (a, e) binding, (b, f)
ACE2 inhibition, (c, g) ADCC, or (d, h) complement fixation at enrollment or 1
MPE, respectively. Predicted probabilities from logistic regression models are
graphed in black with 95% confidence intervals shaded in gray. i, j Random Forest

variable importance plots were used to determine the relative ranking of different
demographic and serological variables in descending order of importance, expressed
as mean decrease accuracy, for the classification of intubation or death among
hospitalized patients at enrollment. Exclusion of serological variables from models,
particularly those >10% mean decrease accuracy, would result in reduced model
accuracy for classifying patients as intubated or deceased.
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at the 6-month follow-up levels of C7 and complement activity were ele-
vated, suggesting complementdysregulationmaybeassociatedwith severity
and persistence of disease by impacting coagulation and tissue damage.
These findings highlight the need to better understand the non-neutralizing
functions of antibodies to SARS-CoV-2 during COVID-19, their predictive
value for disease outcomes, and the mechanisms of functional
heterogeneity.

Other studies have highlighted the importance of antibody biomarkers
in defining the COVID-19 outcome although the results are inconsistent,
likely due to differences in study design, patients’ characteristics (e.g., age,
sex, ethnicity, etc.), antibody assays, and analyticalmethods (e.g., the groups
with which comparisons are made). For example, ref. 42 showed an asso-
ciation of IgG antibody titer at the time of hospital admission with the
requirement of mechanical ventilation, while ref. 43 showed that antibody
responses are not significantly different between discharged and deceased
COVID-19 patients, except for antibodies towards disordered linker region
of N protein. De Vito et al. 44 used multivariate Cox regression modeling to
show that anti-N IgG titers at hospital admission are independently asso-
ciated with the risk of death from COVID-19. Smit et al45. showed a lower
virus-neutralizing antibody titer during hospital admission in fatal versus
non-fatal cases of COVID-19, while ref. 13 showed that reduced neu-
tralization potency, but not neutralizing antibody titers, is associated with
death from COVID-19. Our data support and expand on previous studies
by illustrating that elevatedbinding andvirus neutralization and lower levels
of complement-fixing antibody, together with elevated cytokine and che-
mokine responses during enrollment, are associated with the likelihood of
death and intubation from COVID-19 among hospitalized patients.

In our study, the application of machine learning algorithms, such as
random forest models, allowed for the identification of the variables,
including sociodemographic and immunological measures, that were most
predictive of severe COVID-19 outcomes (i.e., intubation or not; deceased
or not) in our dataset. Machine learning has been applied to -omic datasets
and infectious disease studies with sociodemographic and clinical variables
(e.g., age, sex, comorbidities, medications, vital signs, symptoms, lab tests,
etc.); however, machine learning has been underutilized with immunolo-
gical datasets46–51. In our study, upper respiratory tract viralRNA levels at the
time of enrollment and sociodemographic factors, such as age, sex, or BMI,
were not strongly predictive of intubation or death fromCOVID-19 relative
to the serological variables in this dataset. Using enrollment data, our
machine learning models revealed that the strongest predictors of sub-
sequent intubation or death from COVID-19 among hospitalized patients
were elevated IgG binding antibodies that recognize SARS-CoV-2 N and S
proteins and virus-specific antibodies that activate complement.

This study has limitations. We used samples of convenience collected
during the pandemic with the non-hospitalized and hospitalized cohorts
from two separate parent studies. As a result, the enrollment timepoints
were partially asynchronous and the days post-PCR test or enrollment may
confound the comparisons between the two cohorts. Additionally, our
statistical modeling approaches and interpretations from this study may be
influenced by the size of the datasets and the specific variables included.
Independent validation datasets were not used to assess random forest
model generalizability due to the limited sample sizes and lack of externally
available datasets with similar variables and units of measurement. The
random forest models were intended to provide insight into biological
associations of disease rather than to be used as clinical diagnostic tools.
Future studies utilizing machine learning algorithms should carefully con-
sider the context, performancemetrics, and generalizability of their models,
particularly those with clinical applications. Collection of demographic and
clinical data (e.g., comorbidities) were conducted with separate surveys in
these two parent studies andmay differ in how comorbidities were defined.

Immunological datasets are often highly complex with diverse
dependent measures across many sample types. The standard practice
among researchers has been to perform over-simplified analyses, such as
parametric or non-parametric pairwise comparisons and regression ana-
lyses, thatmay either limit the ability to identify critical associations or over-

interpret them. Machine learning and artificial intelligence (AI) methods
now offer unique perspectives for interrogating data with a systems-level
approach. Machine learning and AI can inform diagnoses, outcomes,
therapeutic targets, and immune profiles for a wide range of diseases with
considerable applications in biomedicine and immunological research. We
showed the application of machine learning for identifying serological
biomarkers at hospitalization enrollment that may predict outcomes of
critically ill COVID-19 patients, which has application for elucidating
correlates of disease severity as the COVID-19 epidemic continues or for
future pandemic preparedness.

Data availability
All anonymized data that support the findings of this study and source data
for the figures are available through the NIH/NCI Serological Sciences
Network for COVID-19 (SeroNet) data repository, accessible via ImmPort
(https://www.immport.org) under study accession SDY2511. All other data
are available from the corresponding author upon reasonable request.

Code availability
The authors did not develop new software or use custom code in this study.
Code for the random forest models can be accessed at https://github.com/
ayin0510/JH-EPICS. RStudio 2022.07.02.576, Stata 17.0, and GraphPad
Prism were used for analyses.
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