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Abstract

Background

Antimicrobial resistance (AMR) is a multifaceted global challenge, partly driven by inappro-

priate antibiotic prescribing. The objectives of this study were to evaluate the impact of the

COVID-19 pandemic on treatment of common infections, develop risk prediction models

and examine the effects of antibiotics on infection-related hospital admissions.

Methods

With the approval of NHS England, we accessed electronic health records from The Phoe-

nix Partnership (TPP) through OpenSAFELY platform. We included adult patients with pri-

mary care diagnosis of common infections, including lower respiratory tract infection (LRTI),

upper respiratory tract infections (URTI), and lower urinary tract infection (UTI), from 1 Janu-

ary 2019 to 31 August 2022. We excluded patients with a COVID-19 record in the 90 days

before to 30 days after the infection diagnosis. Risk prediction models using Cox propor-

tional-hazard regression were developed for infection-related hospital admission in the 30

days after the common infection diagnosis.

Results

We found 12,745,165 infection diagnoses from 1 January 2019 to 31 August 2022. Of them,

80,395 (2.05%) cases were admitted to the hospital during follow-up. Counts of hospital
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admission for infections dropped during COVID-19, for example LRTI from 3,950 in Decem-

ber 2019 to 520 in April 2020. Comparing those prescribed an antibiotic to those without,

reduction in risk of hospital admission were largest with LRTI (adjusted hazard ratio (aHR)

of 0.35; 95% confidence interval (CI), 0.35–0.36) and UTI (aHR 0.45; 95% CI, 0.44–0.46),

compared to URTI (aHR 1.04; 95% CI, 1.03–1.06).

Conclusions

A substantial variation in hospital admission risks between infections and patient groups

was found. Antibiotics appeared more effective in preventing infection-related complications

with LRTI and UTI, but not URTI. While this study has several limitations, the results indicate

that a focus on risk-based antibiotic prescribing could help tackle AMR in primary care.

Introduction

Antimicrobial resistance (AMR) is a multifaceted global challenge that needs to be managed

through antimicrobial stewardship interventions [1, 2]. Antibiotics are prescribed to prevent

infections, but if prescribed inappropriately or excessively, antibiotics use can drive AMR [3].

Prescribing of antibiotics declined between the end of 2019 and 2021 compared to previous

years as an indirect impact of the COVID-19 pandemic [2], mainly due to reduced social mix-

ing and spread of infections.

Few studies have evaluated the risk of hospital admissions related to common infections

and antibiotic prescribing during the COVID-19 pandemic. During the pandemic, Zhu et al.

found a reduction in community antibiotics prescribing in northwest London [4]. Silva et al.

evaluated the impact of the pandemic on the trend of antibiotics prescribing in outpatient care

in Portugal and found a significant reduction in antibiotic prescribing in outpatient care [5].

Several pre-pandemic studies have investigated the link between using antibiotics and develop-

ing complications, for example Mistry et al. evaluated the risk of incident complication related

to urinary tract infection (UTI), upper respiratory tract infection (URTI), and lower respira-

tory tract infection (LRTI) [3]. van Bodegraven et al. found an association between lower rates

of antibiotics prescribing and higher risk of infection-related complications [6]. Whilst these

studies are informative, there is a need to understand the impact of the pandemic on outcomes

after common infections. This study aimed to evaluate the impact of the COVID-19 pandemic

on the primary care treatment with antibiotic for common infections in England and to

develop and validate risk prediction models for infection-related complications. Risk predic-

tion models are statistical models that aim to predict the probability of future events, for exam-

ple whether a patient will develop a disease or not. This study was part of the BRIT2 project

that aims to optimise the use of antibiotics for treatment of common infections in primary

care [7].

Methods

We used data from the OpenSAFELY platform (https://opensafely.org/) that focuses on urgent

research into COVID-19 pandemic and securely links, pseudonymises, stores, and analyses I

on behalf of the National Health Service pandemic [8, 9]. This platform provides almost 24

million people’s pseudonymised patient-level data of primary care from The Phoenix Partner-

ship (TPP). These data are linked to external databases, e.g., Hospital Episode Statistics with
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OpenSAFELY platform https://opensafely.org/. Data

include pseudonymized data such as coded

diagnoses, medications and physiological

parameters. No free text data are included. All code

is shared openly for review and re-use under MIT

open license (https://github.com/opensafely/amr-

uom-brit/). Detailed pseudonymised patient data is

potentially re-identifiable and therefore not shared.

We rapidly delivered the OpenSAFELY data analysis

platform without prior funding to deliver timely

analyses on urgent research questions in the

context of the global COVID-19 health emergency:

now that the platform is established, we are

developing a formal process for external users to

request access in collaboration with NHS England;

details of this process will be published shortly on

OpenSAFELY.org."
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hospital admission diagnoses [10]. The OpenSAFELY data include patient-level demographics

(age, sex, Body Mass Index or BMI, ethnicity, and smoking status), clinical diagnoses history,

medication history, and vaccination history. OpenSAFELY’s approved projects need to obtain

ethics approval and then develop the codes and maintain them in a public GitHub repository

and use OpenSAFELY Jobs interface to run the codes against real data (e.g., GitHub repository

of BRIT2 project: https://github.com/opensafely/amr-uom-brit) [9]. Our study protocol was

approved by the Research Ethics Committee on 17 August 2021 (reference 21/SC/0287).

Patients’ consent was not required since the data were anonymised electronic health records

(EHRs) and for retrospective research use. The start date of data access and data analysis was

on 8 September 2021 (as indicated by the created_at parameter of GitHub API for BRIT2 proj-

ect repository: https://api.github.com/repos/opensafely/amr-uom-brit).

Study population

The inclusion criteria were adult individuals registered with a general practice during study

period (1 January 2019 to 31 August 2022), who had diagnosis of a common infection, namely

LRTI, URTI (including specific URTI, cough, cold with cough, and sore throat), lower UTI

(not including renal infections), sinusitis, otitis media, and otitis externa. The reason for

restricting to adults was that the prevalence of common infections is different in children and

that the BRIT2 project is focusing on adults [7]. Individuals with a record of COVID-19 diag-

nosis in the 90 days before or 30 days after the date of infection diagnosis were excluded. This

was based on data from the Second Generation Surveillance System (SGSS) with positive

COVID-19 tests and those of the general practitioners (GPs) with a COVID-19 diagnosis. The

diagram of study design shows the inclusion criterion of any infection-related hospital admis-

sion and the exclusion criterion of having any COVID-19 diagnosis records (Fig 1).

The outcomes of interest were infection-related hospital admissions in the 30-day after

the date of infection diagnosis (i.e., follow-up period). We used the 10th revision of

Fig 1. Diagram of study design.

https://doi.org/10.1371/journal.pone.0311515.g001
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International Classification of Diseases (ICD-10) as recorded in the primary admission

diagnosis of the linked hospital data. The selected ICD-10 codes are available at opencode-

lists website [11]. The dictionary of medicines and devices (DMD) codes were used to iden-

tify antibiotics [12].

Study variables

We extracted predictor variables that may be associated with infection-related hospital admis-

sions. These included age, sex, ethnicity, smoking status, socioeconomic class using the Index

of Multiple Deprivation (IMD), region, BMI, comorbidities measured with the Charlson

Comorbidity Index (CCI) [13], season of infection diagnosis, flu vaccination in the one year

before, and history of prior antibiotics in the one year before.

Statistical methods

The common infection cohorts were split into four sub-datasets, including incident infections

with and without prescribed antibiotics and prevalent infections with and without prescribed

antibiotics. Incident common infections were those without a diagnosis record for the same

infection in the 42 days before. Prescribing of antibiotics was based on those given on the date

of infection records or in the five days after the infection diagnosis. We analysed the count and

rate of infection-related hospital admissions for each sub-dataset. A Cox proportional-hazards

regression model was fitted to each sub-dataset. Censored patients were those who died or

deregistered from the practice during follow-up. Patients with a missing value for ethnicity,

smoking status, IMD, and BMI variables were given a missingness indicator.

Each sub-dataset for each common infection was randomly split into development (75%)

and validation (25%) cohort. To assess the effect of prescribed antibiotics on hospital admis-

sion, Cox models were fitted with an additional predictor binary variable for prescribed antibi-

otics. We also built Cox models with an additional categorical variable of antibiotic type (most

prescribed, second most prescribed, others, and none). For evaluation of impact of the

COVID-19 pandemic, we analysed the count of infection-related hospital admission consider-

ing pre-pandemic, beginning of the pandemic, pandemic and after the second national lock-

down. The performance of Cox models was evaluated with C-statistics, which measures the

models’ ability to discriminate patients with complication and those without. Calibration of

models was calculated by comparing the observed and predicted risks for deciles of predicted

risks of infection-related hospital admission. The Jupyter notebooks are available at https://

github.com/opensafely/amr-uom-brit/tree/hosp_pred. The Python lifelines package version

0.26.4 was used for the Cox models [14].

Results

Baseline characteristics

A total of 12,745,165 diagnoses of common infections was found from 1 January 2019 to 31

August 2022, of which 11,455,025 (89.88%) were incident and 1,290,140 (10.12%) were preva-

lent. Of incident common infections, 7,539,015 (65.81%) were prescribed antibiotics (86.33%

received antibiotics for incident LRTI, 55.93% for URTI, and 86.79% for UTI). Of prevalent

common infections, 789,340 (61.18%) were prescribed antibiotics. The main baseline charac-

teristics of the cohort of incident common infections (namely LRTI, URTI, and UTI) without

prescribed antibiotics are shown (Table 1). Remaining baseline characteristics of these cohorts

as well as those for other infections are presented in S1-S4 Tables in S1 Appendix.
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Table 1. Baseline characteristics of the cohorts of incident common infections in patients not prescribed antibiot-

ics (using data from 1 January 2019 to 31 August 2022).

LRTI1 URTI2 UTI3

Total, N infections 252,975 2,567,235 294,325

Age, N (%)

18–24 10,150 (4.01) 158,300 (6.17) 25,545 (8.68)

25–34 20,185 (7.98) 263,190 (10.25) 35,195 (11.96)

35–44 22,390 (8.85) 267,840 (10.43) 28,180 (9.57)

45–54 31,215 (12.34) 372,565 (14.51) 33,920 (11.52)

55–64 39,005 (15.42) 480,850 (18.73) 36,890 (12.53)

65–74 50,195 (19.84) 548,215 (21.35) 48,330 (16.42)

75+ 79,830 (31.56) 476,275 (18.55) 86,270 (29.31)

Sex, N (%)

Male 108,850

(43.03)

1,116,735

(43.50)

83,720 (28.45)

Female 144,125

(56.97)

1,450,500

(56.50)

210,605

(71.55)

Ethnicity, N (%)

White 145,930

(57.69)

1,519,395

(59.18)

168,765

(57.34)

Non-White 15,905 (6.29) 190,065 (7.40) 19,250 (6.54)

Unknown 91,135 (36.03) 857,780 (33.41) 106,310

(36.12)

CCI4, N (%)

Very low (= 0) 123,435

(48.79)

1,499,380

(58.40)

176,150

(59.85)

Low (= 1) 95,705 (37.83) 846,450 (32.97) 85,315 (28.99)

Medium (= 2) 26,145 (10.33) 179,440 (6.99) 25,080 (8.52)

High (= 3 and = 4) 5,645 (2.23) 32,810 (1.28) 5,900 (2.00)

Very high (�5) 2,040 (0.81) 9,160 (0.36) 1,875 (0.64)

Flu vaccination, N (%)

Yes 134,495

(53.17)

1,237,915

(48.22)

133,530

(45.37)

No 118,475

(46.83)

1,329,320

(51.78)

160,800

(54.63)

Period

Pre-pandemic 103,175

(40.78)

990,915 (38.60) 91,650 (31.14)

Beginning and during pandemic 67,095 (26.52) 723,000 (28.16) 91,120 (30.96)

After 2nd lockdown 82,705 (32.69) 853,320 (33.24) 111,555

(37.90)

Count of antibiotic prescription in the one year before, mean

(SD5)

2.20 (2.86) 1.42 (2.09) 2.30 (3.09)

1 LRTI, Lower Respiratory Tract Infection.
2 URTI, Upper Respiratory Tract Infection.
3 UTI, Urinary Tract Infection.
4 CCI, Charlson Comorbidities Index, measured from 17 weighted conditions, including myocardial infarction,

congestive heart failure, peripheral vascular disease, cerebrovascular disease, dementia, chronic pulmonary disease,

Connective tissue disease, ulcer disease, mild liver disease, diabetes, hemiplegia, moderate or severe renal disease,

diabetes with complications, any malignancy (including leukaemia and lymphoma), moderate or severe liver disease,

metastatic solid tumour, and AIDS.
5 SD, standard deviation.

https://doi.org/10.1371/journal.pone.0311515.t001
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Counts and rates of infection-related hospital admissions

The counts and rates of infection-related hospital admissions are presented (Table 2 and S5-S8

Tables in S2 Appendix). There were 268,805 cases of infection-related hospital admission

within 30-day follow-up after infection diagnosis. Rates were highest in patients with the high-

est CCI (rate of 149.5 in LRTI, 58.4 in URTI, and 168.0 in UTI). Although the counts of LRTI

Table 2. Count and rate of hospital admission related to incident common infections in patients not prescribed

antibiotics (using data from 1 January 2019 to 31 August 2022).

LRTI1 URTI2 UTI3

Total, N cases 17,915 40,035 18,140

Age, N (rate4)

18–24 235 (23.2) 1,560 (9.9) 455 (17.8)

25–34 505 (25.0) 2,150 (8.2) 615 (17.5)

35–44 670 (29.9) 2,150 (8.0) 565 (20.0)

45–54 1,210 (38.8) 3,180 (8.5) 1,000 (29.5)

55–64 2,030 (52.0) 4,965 (10.3) 1,545 (41.9)

65–74 3,870 (77.1) 8,495 (15.5) 3,525 (72.9)

75+ 9,395 (117.7) 17,540 (36.8) 10,435 (121.0)

Sex, N (rate4)

Male 8,690 (79.8) 19,235 (17.2) 8,160 (97.5)

Female 9,225 (64.0) 20,800 (14.3) 9,980 (47.4)

Ethnicity, N (rate4)

White 10,255 (70.3) 22,810 (15.0) 10,310 (61.1)

Non-White 780 (49.0) 2,120 (11.2) 705 (36.6)

Unknown 6,880 (75.5) 15,105 (17.6) 7,125 (67.0)

CCI5, N (rate4)

Very low (= 0) 6,520 (52.8) 16,495 (11.0) 7,210 (40.9)

Low (= 1) 7,400 (77.3) 15,580 (18.4) 6,790 (79.6)

Medium (= 2) 2,940 (112.4) 5,845 (32.6) 2,940 (117.2)

High (= 3 and = 4) 750 (132.9) 1,580 (48.2) 880 (149.2)

Very high (�5) 305 (149.5) 535 (58.4) 315 (168.0)

Flu vaccination, N (rate4)

Yes 11,765 (87.5) 24,535 (19.8) 11,660 (87.3)

No 6,150 (51.9) 15,500 (11.7) 6,475 (40.3)

Periods, N (rate4)

Pre-pandemic 7,375 (71.5) 16,165 (16.3) 6,125 (66.8)

Beginning and during pandemic 4,575 (68.2) 10,440 (14.4) 5,170 (56.7)

After 2nd lockdown 5,965 (72.1) 13,430 (15.7) 6,845 (61.4)

1 LRTI, Lower Respiratory Tract Infection.
2 URTI, Upper Respiratory Tract Infection.
3 UTI, Urinary Tract Infection.
4 Rate is the number of cases per 1000 patients with common infection, calculated by dividing the count of infection-

related hospital admission cases (numerator) by the count of infection diagnosis (denominator) and then multiplied

by 1000.
5 CCI, Charlson Comorbidities Index, measured from 17 weighted conditions, including myocardial infarction,

congestive heart failure, peripheral vascular disease, cerebrovascular disease, dementia, chronic pulmonary disease,

Connective tissue disease, ulcer disease, mild liver disease, diabetes, hemiplegia, moderate or severe renal disease,

diabetes with complications, any malignancy (including leukaemia and lymphoma), moderate or severe liver disease,

metastatic solid tumour, and AIDS.

https://doi.org/10.1371/journal.pone.0311515.t002
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and URTI dropped during the pandemic, the rates did not change substantially by COVID-19

status (Table 2). Rates of UTI, however, fluctuated; from 66.8 pre-pandemic to 56.7 in the

beginning and during the pandemic periods, and then to 61.4 after the second lockdown. A

reduction of infection-related hospital admission was revealed in the beginning of the pan-

demic, between January 2020 and April 2020, especially in LRTI and URTI which dropped by

87% and 77%, respectively, between January 2020 and April 2020 (Fig 2).

Performance and hazard ratio results

C-statistics of the Cox models with development and validation datasets of incident infections

with no antibiotics were respectively 0.68 and 0.67 for LRTI, 0.73 and 0.72 for URTI, and 0.73

and 0.73 for UTI (S9 Table in S3 Appendix). C-statistics of the Cox models with development

and validation datasets for hospital admission related to all incident and prevalent infections

with and without antibiotics are presented in the same table (S9 Table in S3 Appendix). Infec-

tions included LRTI, URTI, UTI, sinusitis, otitis media, otitis externa, as well as the compo-

nents of the URTI: URTI, cough, cold with cough, and sore throat, with and without

antibiotics.

Age was strongly associated with infection-related complications with adjusted hazard

ratios (aHRs) of age category 75+ being 5.27 (95% CI 4.49 to 6.28) in LRTI, 3.54 (95% CI 3.31

to 3.78) in URTI, and 5.54 (95% CI 4.94 to 6.20) in UTI (Table 3). CCI also had a high associa-

tion with hospital admission related to incident infections as aHRs of very high CCI were 2.03

Fig 2. Count of hospital admissions related to upper respiratory tract infections (URTI; including specific URTI, cough, cold with cough,

and sore throat), lower respiratory tract infection (LRTI), urinary tract infection (UTI), sinusitis, otitis media, and otitis externa.

https://doi.org/10.1371/journal.pone.0311515.g002
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Table 3. Adjusted hazard ratios of infection-related hospital admissions for several predictors for incident common infection stratified by infection (using data

from 1 January 2019 to 31 August 2022).

LRTI1 URTI2 UTI3

Adjusted HR4 (95% CI5) Adjusted HR4 (95% CI5) Adjusted HR4 (95% CI5)

Sex

Male 1.22 (1.18–1.26) 1.18 (1.16–1.21) 1.54 (1.49–1.59)

Age

25–34 1.15 (0.96–1.39) 0.90 (0.83–0.97) 0.99 (0.86–1.13)

35–44 1.47 (1.23–1.75) 0.91 (0.84–0.98) 1.04 (0.90–1.20)

45–54 1.78 (1.50–2.10) 0.96 (0.89–1.03) 1.43 (1.26–1.63)

55–64 2.38 (2.02–2.80) 1.13 (1.05–1.21) 1.94 (1.72–2.19)

65–74 3.36 (2.86–3.95) 1.67 (1.56–1.78) 3.27 (2.92–3.68)

75+ 5.27 (4.49–6.18) 3.54 (3.31–3.78) 5.54 (4.94–6.20)

BMI6

Underweight 1.11 (1.01–1.22) 1.39 (1.30–1.49) 1.13 (1.01–1.27)

Overweight 0.94 (0.89–0.98) 0.85 (0.83–0.88) 0.93 (0.89–0.97)

Obese 1.04 (0.99–1.09) 0.99 (0.96–1.02) 1.13 (1.08–1.19)

Unknown 1.15 (1.09–1.22) 1.32 (1.27–1.37) 1.11 (1.05–1.17)

Ethnicity

White 1.08 (0.99–1.18) 1.10 (1.04–1.16) 1.15 (1.04–1.26)

Unknown 1.13 (1.04–1.24) 1.24 (1.17–1.32) 1.26 (1.15–1.39)

CCI7

Low 1.14 (1.10–1.19) 1.31 (1.28–1.35) 1.28 (1.23–1.33)

Medium 1.44 (1.37–1.52) 1.82 (1.75–1.89) 1.54 (1.46–1.62)

High 1.62 (1.48–1.77) 2.43 (2.28–2.58) 1.84 (1.70–2.00)

Very high 2.03 (1.78–2.31) 3.18 (2.88–3.51) 2.21 (1.94–2.52)

Smoking status

Smoker 1.14 (1.08–1.21) 0.91 (0.88–0.94) 1.21 (1.14–1.29)

Never smoked 0.94 (0.91–0.98) 1.15 (1.11–1.18) 0.97 (0.94–1.01)

Unknown 0.87 (0.60–1.26) 1.15 (0.96–1.39) 1.06 (0.76–1.47)

IMD8

1 (most deprived) 1.02 (0.97–1.08) 1.04 (1.01–1.08) 1.07 (1.01–1.13)

3 0.91 (0.86–0.96) 0.92 (0.89–0.96) 0.91 (0.87–0.96)

4 0.94 (0.89–1.00) 0.94 (0.91–0.98) 0.88 (0.83–0.93)

5 (most affluent) 0.83 (0.79–0.88) 0.88 (0.85–0.91) 0.76 (0.72–0.81)

Unknown 1.16 (1.01–1.32) 0.98 (0.89–1.07) 1.07 (0.94–1.22)

Season

Spring 0.94 (0.90–0.99) 0.95 (0.92–0.98) 0.94 (0.89–0.99)

Summer 1.08 (1.03–1.14) 0.98 (0.94–1.01) 1.00 (0.95–1.05)

Winter 1.02 (0.97–1.07) 1.04 (1.00–1.07) 0.98 (0.93–1.03)

Region

London 0.81 (0.72–0.91) 0.97 (0.90–1.04) 0.88 (0.79–0.98)

North East 1.04 (0.96–1.12) 1.02 (0.97–1.07) 1.04 (0.96–1.13)

North West 0.84 (0.78–0.89) 0.79 (0.76–0.82) 0.77 (0.72–0.83)

West Midlands 1.07 (0.98–1.17) 1.17 (1.10–1.24) 1.14 (1.05–1.25)

Yorkshire and The Humber 1.02 (0.97–1.08) 0.94 (0.91–0.98) 1.11 (1.06–1.18)

South East 1.02 (0.94–1.10) 0.90 (0.86–0.95) 0.91 (0.85–0.98)

East Midlands 1.13 (1.08–1.19) 1.08 (1.04–1.12) 1.05 (1.00–1.11)

South West 0.98 (0.92–1.04) 0.83 (0.79–0.86) 0.83 (0.78–0.88)

(Continued)
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(95% CI 1.78 to 2.31) for LRTI, 3.18 (95% CI 2.88 to 3.51) for URTI, and 2.21 (95% CI 1.94 to

2.52) for UTI. History of prior antibiotics influenced the risk of infection-related complication,

especially in mild infections like URTI with aHR of 1.14 (95% CI 1.13–1.14). aHRs for these

predictors for other infections are shown in S10-S12 Tables in S3 Appendix.

Crude hazard ratios (cHRs) of antibiotic exposure (compared to non-exposure) for incident

infections were 0.35 (95% CI 0.35 to 0.36) for LRTI, 1.04 (95% CI 1.03 to 1.06) for URTI, and

0.45 (95% CI 0.44 to 0.46) for UTI (Table 4). Patients prescribed the most prescribed antibiotic

type had comparable risks to those prescribed the second most prescribed type, e.g., cHR of

1.02 (95% CI 0.99–1.05) for incident LRTI; however, patients prescribed less frequent types

had increased risks of infection-related hospital admission, e.g., cHR of 1.72 (95% CI 1.67–

1.78) for incident LRTI (Table 4). No major effect modification in the cHRs were observed

when stratifying by sex, age, and period regarding COVID-19 status. cHRs of antibiotic expo-

sure and antibiotic types for incident and prevalent common infections and cHRs of models

with stratifications by sex categories, age categories, and period are presented (Table 4 and S13

and S14 Tables in S3 Appendix).

Further evaluation with pre-pandemic data

For further evaluation of impact of COVID-19 pandemic, we used the pre-pandemic data to

develop and validate Cox models for infection-related hospital admissions. See S4 Appendix

for more information. S5 Appendix provides the TRIPOD checklist.

Discussion

The risk prediction models indicated that the main drivers of infection-related hospital admis-

sion were age, CCI, and history of prior antibiotics. Antibiotics were found to be more effective

in preventing complications (compared to no treatment) in LRTI and UTI, in contrast to

URTI. The models found that first-choice antibiotic types were associated with more reduction

in the risk of infection-related hospital admission, whereas less popular antibiotic types were

associated with lesser effects.

Table 3. (Continued)

LRTI1 URTI2 UTI3

Adjusted HR4 (95% CI5) Adjusted HR4 (95% CI5) Adjusted HR4 (95% CI5)

Flu vaccination

Yes 0.95 (0.92–0.99) 0.82 (0.80–0.84) 0.96 (0.92–1.00)

Count of antibiotic prescription in the one year before 1.03 (1.03–1.04) 1.14 (1.13–1.14) 1.02 (1.02–1.03)

1 LRTI, Lower Respiratory Tract Infection.
2 URTI, Upper Respiratory Tract Infection.
3 UTI, Urinary Tract Infection.
4 HR, hazard ratio.
5 CI, confidence interval.
6 BMI, Body Mass Index recorded in the last 5 years.
7 CCI, Charlson Comorbidities Index, measured from 17 weighted conditions, including myocardial infarction, congestive heart failure, peripheral vascular disease,

cerebrovascular disease, dementia, chronic pulmonary disease, Connective tissue disease, ulcer disease, mild liver disease, diabetes, hemiplegia, moderate or severe renal

disease, diabetes with complications, any malignancy (including leukaemia and lymphoma), moderate or severe liver disease, metastatic solid tumour, and AIDS.
8 IMD, Multiple Deprivation Index, quintile measured from patient-level address.

Reference group for variable sex is female, for age is 18–25, for BMI is healthy weight, for ethnicity is non-white, for CCI is very low, for smoking status is ex-smoker, for

IMD is 2, for season is autumn, for region is east, for flu vaccination is no.

https://doi.org/10.1371/journal.pone.0311515.t003
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Prescribed antibiotics were strongly associated with reduced risk of hospital admission

related to incident LRTI and UTI, but not in URTI. We could not find much literature on the

effectiveness of antibiotics in reducing the risk of hospital admission with common infections.

There may be different possible explanations for our finding of greater antibiotic effectiveness

in preventing hospital admission related to LRTI and UTI. The first one may be that viral

infections may be more frequent with infections, e.g., URTI. General practice in the United

Kingdom (UK) does not routinely test whether common infections are bacterial or viral. The

second explanation may be due to differential confounding, where antibiotics are prescribed

to sicker patients in infections like URTI and healthier patients in infections like LRTI and

UTI. However, we did not find substantive evidence for this and a study in a different database

found that antibiotic prescribing was unrelated to patient’s risk of hospital admission for infec-

tion-related complications [3]. The finding in this study of reduced antibiotic effects in pre-

venting complications with increasing count of antibiotic prescription in the one year before is

Table 4. Crude hazard ratios of antibiotic exposure stratified by incident and prevalent common infection (using data from 1 January 2019 to 31 August 2022).

LRTI1 URTI2 UTI3

Crude HR4 (95% CI5) Crude HR4 (95% CI5) Crude HR4 (95% CI5)

Incident Prevalent Incident Prevalent Incident Prevalent

Antibiotic exposure

No exposure reference reference reference reference reference reference

Exposed 0.35 (0.35–0.36) 0.51 (0.48–0.53) 1.04 (1.03–1.06) 0.87 (0.84–0.91) 0.45 (0.44–0.46) 0.53 (0.51–0.55)

Antibiotic type6

Most prescribed reference reference reference reference reference reference

Second most prescribed 1.02 (0.99–1.05) 0.90 (0.83–0.97) 1.00 (0.98–1.03) 0.94 (0.88–1.00) 1.15 (1.12–1.18) 0.93 (0.88–1.00)

Others 1.72 (1.67–1.78) 1.42 (1.32–1.53) 1.43 (1.40–1.47) 1.36 (1.28–1.44) 1.40 (1.36–1.43) 1.14 (1.08–1.20)

None 3.16 (3.09–3.24) 2.17 (2.02–2.32) 1.05 (1.03–1.07) 1.26 (1.19–1.33) 2.49 (2.43–2.55) 1.96 (1.87–2.06)

Stratified by sex

Male 0.34 (0.33–0.35) 0.50 (0.47–0.54) 1.07 (1.05–1.10) 0.91 (0.86–0.96) 0.54 (0.52–0.55) 0.58 (0.54–0.61)

Female 0.36 (0.35–0.37) 0.51 (0.48–0.54) 1.00 (0.98–1.03) 0.86 (0.82–0.90) 0.39 (0.38–0.40) 0.51 (0.48–0.53)

Stratified by age

18–24 0.32 (0.26–0.38) 0.37 (0.24–0.57) 0.88 (0.82–0.95) 0.70 (0.59–0.83) 0.37 (0.33–0.43) 0.60 (0.45–0.80)

25–34 0.32 (0.28–0.36) 0.55 (0.42–0.73) 0.86 (0.81–0.92) 0.68 (0.58–0.79) 0.43 (0.38–0.48) 0.45 (0.36–0.56)

35–44 0.26 (0.23–0.29) 0.46 (0.36–0.58) 0.79 (0.74–0.84) 0.85 (0.71–1.01) 0.39 (0.35–0.43) 0.57 (0.46–0.72)

45–54 0.26 (0.24–0.28) 0.47 (0.39–0.56) 0.93 (0.88–0.98) 0.81 (0.71–0.92) 0.37 (0.34–0.40) 0.43 (0.36–0.51)

55–64 0.27 (0.25–0.28) 0.49 (0.43–0.56) 1.02 (0.97–1.06) 0.93 (0.83–1.03) 0.44 (0.41–0.47) 0.49 (0.43–0.56)

65–74 0.31 (0.30–0.32) 0.41 (0.37–0.46) 1.08 (1.05–1.12) 0.88 (0.81–0.95) 0.41 (0.39–0.43) 0.50 (0.46–0.54)

75+ 0.42 (0.41–0.43) 0.55 (0.51–0.58) 1.08 (1.05–1.10) 0.89 (0.84–0.94) 0.48 (0.47–0.50) 0.57 (0.54–0.60)

Stratified by time

Pre-pandemic 0.38 (0.36–0.39) 0.55 (0.52–0.59) 1.05 (1.03–1.08) 0.88 (0.83–0.92) 0.44 (0.42–0.45) 0.54 (0.51–0.58)

Beginning and during pandemic 0.40 (0.37–0.42) 0.49 (0.43–0.55) 1.16 (1.11–1.20) 1.04 (0.95–1.15) 0.40 (0.38–0.41) 0.50 (0.46–0.54)

After 2nd lockdown 0.37 (0.36–0.38) 0.52 (0.49–0.55) 1.10 (1.08–1.12) 0.90 (0.86–0.94) 0.41 (0.40–0.42) 0.52 (0.49–0.54)

1 LRTI, Lower Respiratory Tract Infection.
2 URTI, Upper Respiratory Tract Infection.
3 UTI, Urinary Tract Infection.
4 HR, hazard ratio.
5 CI, confidence interval.
6 The most prescribed and the second most prescribed type of antibiotic are, respectively, amoxicillin and doxycycline for LRTI and URTI, and nitrofurantoin and

trimethoprim for UTI.

https://doi.org/10.1371/journal.pone.0311515.t004
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consistent with a previous study [15]. We also found that antibiotics prescribed for infections

like LRTI and UTI were more effective in preventing complications than infections like URTI.

The first choice antibiotic types for respiratory infections were amoxicillin and doxycycline

and nitrofurantoin and trimethoprim for UTI, which correspond with the recommendations

of the National Institute for Health and Care Excellence (NICE) guidelines [16–18]. These

first-choice antibiotic types for each infection were associated with a larger reduction of infec-

tion-related complication risk, compared with lesser effects for other antibiotic types. The

NICE guidelines will have considered the most frequent pathogens in determining the recom-

mended antibiotic type. It could be useful if guidelines also state the antibiotic types that are

likely to be ineffective and should not be prescribed.

Infection-related hospital admissions reduced in the beginning and fluctuated during the

COVID-19 pandemic, which can be interpreted as the consequence of less transmission of

infections and lower incidence of common infections. The latest report on antibiotics utilisa-

tion in England stated 10.9% decline in antibiotics consumption between 2019 to 2020, which

is an evident impact of COVID-19 pandemic [2]. An analysis of prescribing of first-line antibi-

otics in English primary care found a 13.5% reduction between March and September 2020

compared with March and September 2019 [19]. A qualitative interview study with GPs in

England found that although GPs were more likely to prescribe empirical antibiotics for respi-

ratory tract infections, they prescribed less antibiotics during the pandemic, except for UTI

and skin infections [20], which is similar to our findings. International studies reported a simi-

lar decrease in antibiotics prescriptions, e.g., in Spain [21], Belgium [22], Brazil [23], and Neth-

erlands [24], in the beginning of the pandemic. The reduction of antibiotics used could have

unintended consequences like severe infections and complications [4], which we tried to

address in this study.

There are only a limited number of risk prediction models for the prognosis of common

infections. Before the COVID-19 pandemic, risk prediction models were developed to predict

complications related to incident LRTI, URTI, and UTI in UK primary care [3]. This study’s

HRs for infection-related hospital admissions are similar to our findings; greater age and CCI

increase the risk of complications, but some variables like white ethnicity or winter season

have a different association in the current study. Another similar study investigated antibiotics

prescribing for common infections in UK primary care, and found age, sex, region, and CCI

as associating factors with prescribing antibiotics [25]. Unlike these two studies and our study,

others focused on risk prediction models for a specific infection, e.g., UTI [26, 27], sepsis [28],

or pneumonia [29], and specific resistance strains, such as carbapenem-resistant Enterobacter-

ales [30, 31].

There are several strength and limitations of this study. The main strength of this study is

that it only considered complications related to common infections in patients without

COVID-19. Another strength of this study is that it employed a large national EHR dataset

which made it possible to develop multiple prediction models for each common infection.

This is the first study to look at infection-related hospital admission following prevalent com-

mon infections in primary care. This is of importance since there are no guidelines in England

for repeated infection, except for UTI. Models for hospital admissions related to prevalent

common infections target patients who may be at higher risk of complications. One weakness

of our models developed with overall data (from 1 January 2019 to 31 August 2022) is that

their accuracy can be challenged since they were developed with the fluctuating records of

infections in primary care during the pandemic. Therefore, our main focus was on models

with pre-pandemic data. This also highlights the need for updating risk prediction models for

infection-related hospital admission in the future, especially those applied in clinical practice.

A further limitation relates to the exclusion of patients with COVID-19 given uncertainty

PLOS ONE Evaluation of hospital admission related to common infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0311515 December 31, 2024 11 / 16

https://doi.org/10.1371/journal.pone.0311515


whether all COVID-19 tests performed by private companies were included in the SGSS. Rec-

ords of infection diagnosis were based on GP consultations, either in person or virtual, which

the latter became common during the COVID-19 pandemic and could potentially impact

infection diagnosis remotely. The risk prediction models also did not include severity of the

infections as signs and symptoms are generally not well coded by GPs. Confounding by sever-

ity of infection also was not controlled for in our analyses.

Conclusion

The COVID-19 pandemic indirectly impacted the antibiotic treatment for common infections,

particularly infections like LRTI. Risk models found that age, CCI, and history of prior antibi-

otics were the main predictors of infection-related hospital admission. Antibiotics appeared

more effective in preventing infection-related complications with LRTI and UTI, but not

URTI. A focus on risk-based antibiotic prescribing could help to tackle AMR in primary care.

There is a need for GPs and patients to be provided with personalised information on the

infection risks and prognosis.
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