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Summary
Background COVID-19 convalescent plasma (CCP) is a treatment option for COVID-19. This study investigated the
safety and efficacy of early, very high-titre CCP in immunocompromised individuals with mild COVID-19.

Methods This randomised, controlled, open-label trial assessed CCP in immunocompromised patients (n = 120) with
mild COVID-19 in 10 clinical trial centres across Germany, France, and the Netherlands. Patients were randomised
1:1 to receive either standard of care (SoC) alone (SoC group) or SoC and 2 units of CCP. Most patients (89.7%) had
received ≥3 SARS-CoV-2 vaccinations. The primary endpoint was hospitalisation for progressive COVID-19
symptoms or death by day 28 after randomisation, analysed on a modified intention-to-treat basis (117 patients).
The safety analysis included the full analysis set. The trial is registered with EudraCT 2021-006621-22, and
ClinicalTrials.gov, NCT05271929.

Findings Between April 11, 2022 and November 27, 2023, 120 patients were enrolled. Patients in the CCP group
received a median of 559 ml CCP from convalescent, vaccinated donors with very high levels of SARS-CoV-2 antibodies
(median 81,810 IU/ml) at a median 4 days after symptom onset. The primary outcome occurred in 5/58 patients (8.6%)
in the SoC group and in 0/59 patients (0%) in the CCP group, difference −8.6% (95% confidence interval of
difference −19% to −0.80%; p-value 0.027; Fisher’s exact test). The course of SARS-CoV-2 antibodies in the patients
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demonstrated a passive transfer of antibodies by the CCP, in particular neutralising effects against new SARS-CoV-2
variants. Whole genome sequencing of SARS-CoV-2 in patients during follow-up showed significant intra-host viral
evolution, but without differences between groups. CCP was well tolerated.

Interpretation Early administration of high-titre CCP can prevent hospitalisation or death in immunocompromised
patients with mild COVID-19.

Funding Support-e project (European Union’s Horizon 2020 Programme), German Federal Ministry of Education
and Research, ZonMw, the Netherlands Organisation for Health Research and Development.

Copyright © 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Research in context

Evidence before this study
We searched PubMed databases from Jan 01, 2020 to Dec 31,
2024, with no language restrictions, for randomised trials or
meta-analyses evaluating the effect of convalescent plasma in
immunocompromised patients with mild COVID-19 not
hospitalised for COVID-19. We used the terms (“COVID-19”,
“COVID”, “SARS-CoV-2” or “Coronavirus”) AND (“convalescent
plasma”, “CCP”, “hyperimmune plasma”, “passive
immunization”, “passive immunotherapy”, “plasma therapy”)
AND (“immune deficiency”, “immunodeficiency”, “immune
defect”, “immunocompromised”, “immune suppression”,
“immunosuppression”, “transplantation”, “T cell defect”, “B
cell defect”, “outpatient”). Four randomised trials that included
immunocompromised patients and 4 meta-analyses were
identified, two that specifically analysed the treatment of
outpatients with COVID-19 and one that specifically analysed
the treatment of immunocompromised patients. In the latter,
three randomised clinical trials enrolling 214 participants and 5
matched cohorts were included. All controlled trials enrolled
patients already hospitalised for COVID-19 and due to the
eligibility criteria, the immunocompromised patients were only
a subgroup of the total study population in the four
randomised trials. Mortality was observed more commonly
among standard of care recipients compared with convalescent
plasma (risk of mortality according to pooled risk ratio 0.63
(95% CI 0.50–0.79)). At the time the studies included in this
meta-analysis were conducted, no specific antiviral therapy
with monoclonal antibodies and antiviral substances was
available. Furthermore, with a few exceptions, only plasma
from non-vaccinated convalescent donors was used. A recent
observational study reported the clinical outcome of
immunocompromised COVID-19 outpatients who received
contemporary COVID-19 specific therapy with or without
concomitant treatment with very high-titre COVID-19
convalescent plasma from vaccinated donors. A relative risk
reduction for hospitalisation of 65% (p = 0.046) was reported.

Added value of this study
COVIC-19 is a randomised trial to include only
immunocompromised patients and to compare the early

administration of very high-titre plasma in addition to
standard of care with standard of care alone. The standard
therapy included anti-S monoclonal antibodies and antivirals.
The vast majority of patients had multiple vaccinations
against SARS-CoV-2. The convalescent plasma was obtained
from selected vaccinated and convalescent donors and had
very high concentrations of anti-SARS-CoV-2 antibodies, also
confirmed by neutralisation tests. Thus, the COVIC-19 trial
provides information on the use of convalescent plasma in
the light of the rapid evolution of the pandemic, a vaccine-
immunised population and the advent of other treatment
options. We found that compared with standard of care
alone, high-titre convalescent plasma given within 7 days of
symptom onset reduced hospitalisation or death in
immunocompromised patients with mild COVID-19. Our data
are consistent with the results of subgroup analyses of
randomised trials that included, among other patient groups,
immunocompromised patients, as well as with the results of
cohort studies that also suggested a benefit of convalescent
plasma. The course of antibody titres in the plasma of
recipients compared to the standard therapy group shows the
passive transfer of SARS-CoV-2 antibodies, particularly against
newer variants. Genotyping of SARS-CoV-2 from
nasopharyngeal specimens indicated no immune selection of
new variants.

Implications of all the available evidence
The available evidence indicates that administration of very
high-titre convalescent plasma to immunocompromised
patients with mild COVID-19 before hospital admission can
prevent hospitalisation and/or death. Contemporaneous
convalescent plasma remains an immediate treatment option
for vulnerable patients that remain at risk of progression to
severe disease. In the event of another epidemic with a
pathogen for which treatment with passive humoural
immunity appears possible, clinical studies should be carried
out as early as possible, especially in immunocompromised
patients, with early administration of convalescent plasma
with the highest possible antibody titres.
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Introduction
COVID-19 convalescent plasma (CCP) has been
explored as one of the treatment options for COVID-19.
A systematic review and meta-analysis of clinical trials
concluded with high certainty of evidence that CCP for
individuals with moderate to severe disease does not
reduce mortality and has little to no effect on clinical
improvement or deterioration.1 The majority of CCP
trials included hospitalised patients with moderate to
severe COVID-19.1 Few trials enrolled outpatients.2–7

Cohort studies8–12 or subgroup analyses of randomised
trials13–16 suggested benefit of CCP in immunocompro-
mised inpatients. Definitive evidence, in the current
epidemiology circumstances, for CCP effectiveness in
immunocompromised outpatients is absent.

The randomised, open-label COVIC-19 clinical trial
was developed based on the lessons learnt from previous
CCP studies, but has several distinctive aspects compared
to previous CCP studies.17 First, only patients with im-
mune deficiency, who are less likely to mount a strong
immune response to vaccination, were included.18,19

Second, the standard of care (SoC) included S-protein
monoclonal antibodies or antiviral drugs (Molnupiravir,
Nirmatrelvir/Ritonavir, Remdesivir). Third, only CCP
units from selected, convalescent, vaccinated donors
(“superimmunised donors”) were administered.20,21

Moreover, CCP was administered very early after onset
of mild COVID-19. Finally, the cross-neutralisation ca-
pacity of the transfused CCP units, the dynamics of
SARS-CoV-2 antibodies in the recipients and their reac-
tivity against new SARS-CoV-2 variants were studied and
causal virus and those variants evolving during infection
were characterised by whole genome sequencing.

In this randomised controlled clinical trial, we
investigated whether very high-titre CCP from conva-
lescent and vaccinated donors, administered 7 days of
symptom onset, would prevent hospitalisation or death
in immunocompromised patients with mild COVID-19.
Methods
Trial design
The clinical trial “Early, Very High-Titre Convalescent
Plasma Therapy in Clinically Vulnerable Individuals with
Mild COVID-19” (Acronym COVIC-19) was an
investigator-initiated, randomised, open-label, multicentre
study conducted across 10 centres in Germany, France,
and the Netherlands. Details of the trial design are pro-
vided in the Supplementary Appendix (S) (pp 4–11) and
have been published previously.17 The trial protocol was
approved by the Ethical Committee of University of Ulm
(number 41/22) and the local ethical committee at each
trial site and by relevant regulatory agencies.

Patients
The trial enrolled patients 18 years of age or older with
acquired or congenital immune deficiency and mild
www.thelancet.com Vol 113 March, 2025
COVID-19 within 7 days of symptom onset. All patients
provided written informed consent. The inclusion and
exclusion criteria are provided in the Appendix (p 4–5).
A total of 120 patients were enrolled in Germany (100
patients, 7 centres), the Netherlands (11 patients,
1 centre), France (9 patients, 2 centres) (Fig. 1).

Randomisation and masking
Eligible patients were randomised using a central web-
based randomisation service (CleanWeb, Telemedicine
Technologies; Boulogne Billancourt, France). Patients
were allocated based on a pre-specified randomisation
list. Randomisation was performed at a 1:1 ratio,
blocked (with randomly varying block sizes of two and
four) and stratified by country.

Procedures
Patients received SoC plus CCP (CCP group) or SoC
alone (SoC group) at a 1:1 ratio. Patients in the CCP
group received two ABO-compatible CCP units
(200–350 ml each) within 7 days of symptom onset. CCP
was obtained by aphaeresis from vaccinated, convales-
cent donors with very high titres of anti-SARS-CoV-2
antibodies. Plasma contained an anti-SARS-CoV-2 anti-
body concentration ≥4.000 BAU/ml measured by the
QuantiVac anti-SARS-CoV-2 IgG ELISA (Euroimmun,
Lübeck, Germany, cat. no. EI 2606-9601-10 G) or
≥20.000 IU/ml measured by the anti-SARS-CoV-2
Elecsys test (Roche, Basel, Switzerland, cat. no. 09 289
275 190) or a minimum neutralising antibody titre of
1:640 against delta (B1.617.2), omicron (B1.1.529), or
any future SARS-CoV-2 variant.

The following COVID-19 medications were author-
ised as standard of care in patients enrolled in the study
as pre-exposure prophylaxis, post-exposure prophylaxis,
as well as early treatment: anti-SARS-CoV-2 monoclonal
antibodies (including Casirivimab/Imdevimab, Regdan-
vimab, Sotrovimab, and Tixagevimab/Cilgavimab) and
antiviral drugs (Molnupiravir, Nirmatrelvir/Ritonavir,
and Remdesivir).

Outcomes
The primary endpoint was the proportion of participants
with at least one overnight stay in hospital for progres-
sive COVID-19 symptoms, or who died, by day 28 after
randomisation.

Secondary endpoints included proportion of partici-
pants with hospitalisation for progressive COVID-19
symptoms, or death by day 14 (stages 4–10 of the
WHO scale) and all-cause mortality by day 28, 90, and
180 after randomisation. A full list of endpoints and
details regarding randomisation, laboratory methods for
measurement of SARS-CoV-2 antibodies and their
neutralising capacity and the detection of SARS-CoV-2
in nasopharyngeal specimens and the whole genome
sequencing of SARS-CoV-2 are provided in the
Appendix (pp 5–10).
3
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Fig. 1: Trial profile. One patient was randomised by error. The patient in the SoC group was already hospitalised for COVID-19. Two patients in
the CCP group withdrew consent, one patient before and one after administration of CCP.
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Statistical analysis
We estimated that the risk of severe COVID-19 in the
vulnerable population would be 30% and that the inter-
vention would reduce the risk of hospitalisation by 50%.2

Based on a Z-Test, a two-tailed α of 0.05, a 1-β of 0.90,
and a relative risk of 0.5, 316 patients are required. The
sample size was increased to 340 to account for missing
data/loss to follow up. More information on sample size
calculations have been previously published17 and are
presented in the Appendix (p 5). All efficacy analyses
were performed on the modified intention to treat
(mITT) population in which patients were analysed ac-
cording to treatment allocation and patients enrolled in
error were excluded. The primary endpoint was analysed
using Fisher’s exact test under bilateral hypotheses, with
risk difference between groups and 95% confidence in-
terval (95% CI) provided.22 The significance threshold
was set at p < 0.05. Predefined subgroup analyses of the
primary endpoint were performed according to sex, age,
and the use of anti-SARS-CoV-2 monoclonal antibodies
or antivirals. Risk difference or absolute differences (with
95%-CI) are provided for secondary outcomes and no
hypothesis tests were performed. The width of confi-
dence intervals was not adjusted for multiplicity. The
safety analysis was performed on 119 patients as treated.
In accordance with the criteria of the study protocol, the
study was terminated prematurely on January 18, 2024,
before the planned number of patients had been reached.
Due to the significant decline in the number of newly
diagnosed infections and the difficulties in opening new
centres in the outgoing pandemic, recruitment declined.
The Data Safety Monitoring Board recommended to stop
the trial.

The trial is registered with EudraCT 2021-006621-22,
and ClinicalTrials.gov, NCT05271929.
Role of funders
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report.
Results
Patients
120 patients were enrolled between 11th April 2022 and
27th November 2023. 117 patients were included in the
modified intention to treat analysis (mITT), 59 patients in
the CCP arm and 58 patients in the SoC arm (Fig. 1). All
patients were immunocompromised (Table 1, Appendix
Figures S1 and S2). Most patients had a coexisting con-
dition at baseline (Table 1). More than 67% of patients in
both arms received immunosuppressive treatment at
baseline (Appendix Table S1). The time from symptom
onset of SARS-CoV-2 infection to randomisation was 3
days (IQR 2–4, Appendix Figure S3). The most common
symptoms were cough, fatigue, headache, rhinorrhoea,
sore throat, and fever (Appendix Table S2). All infections
with a virus of identifiable lineage were caused by Omi-
cron B.1.1.529 (Table 1, Appendix Figure S4). Almost all
of the study population had received at least three SARS-
CoV-2 vaccinations (Table 1, Appendix Table S3,
Appendix Figure S1). Patients had low antibody levels
at enrolment (Appendix Figure S5). Concentration of
anti-SARS-CoV-2 antibodies (IgG) by QuantiVac ELISA
was 149.1 BAU/ml (IQR 36.9–592.9) (Appendix
Figure S5). While the GenScript Neutralisation assay
demonstrated neutralising activity against wild-type virus
(73%, IQR 37.5%–94.2%), the neutralisation of Omicron
was low (3.5%, IQR 0%–11.3%) (Appendix Figure S5).

The CCP group and SoC groups were similar in
terms of demographic characteristics, underlying
www.thelancet.com Vol 113 March, 2025
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Characteristic Overall
n = 117a

SoC group
n = 58a

CCP group
n = 59a

Age

Median (Q1, Q3) 57 (44, 65) 57 (47, 63) 57 (43, 66)

Min, Max 25, 82 25, 78 28, 82

Sex at birth

Male 68 (58.1%) 33 (56.9%) 35 (59.3%)

Female 49 (41.9%) 25 (43.1%) 24 (40.7%)

Blood group

A 44 (37.6%) 22 (37.9%) 22 (37.3%)

B 14 (12.0%) 8 (13.8%) 6 (10.2%)

AB 9 (7.7%) 5 (8.6%) 4 (6.8%)

O 50 (42.7%) 23 (39.7%) 27 (45.8%)

Immunodeficiencyb 117 (100.0%) 58 (100.0%) 59 (100.0%)

Lymphoid malignancy 14 (12.0%) 5 (8.6%) 9 (15.3%)

Myeloid malignancy 8 (6.8%) 3 (5.2%) 5 (8.5%)

Solid tumour 1 (0.9%) 1 (1.7%) 0 (0.0%)

Allogenic HSCT 3 (2.6%) 2 (3.4%) 1 (1.7%)

Organ transplantation 88 (75.2%) 47 (81.0%) 41 (69.5%)

B cell deficiency 2 (1.7%) 0 (0.0%) 2 (3.4%)

T cell deficiency 1 (0.9%) 0 (0.0%) 1 (1.7%)

Country of enrolment

Germany 97 (82.9%) 49 (84.5%) 48 (81.4%)

France 9 (7.7%) 3 (5.2%) 6 (10.2%)

Netherland 11 (9.4%) 6 (10.3%) 5 (8.5%)

Anti-SARS-CoV-2 monclonal antibodiesc

Tixagevimab/Cilgavimab 52 (44.4%) 26 (44.8%) 26 (44.1%)

Sotrovimab 31 (26.5%) 18 (31.0%) 13 (22.0%)

Antiviralsc

Nirmatrelvir/Ritonavir 15 (12.8%) 3 (5.2%) 12 (20.3%)

Remdesivir 10 (8.5%) 8 (13.8%) 2 (3.4%)

Molnupiravir 1 (0.85%) 0 (0%) 1 (1.7%)

Medical condition (any) 117 (100.0%) 58 (100.0%) 59 (100.0%)

Type of condition

Obesity (BMI > 30) 15 (12.8%) 7 (12.1%) 8 (13.6%)

Chronic cardiac disease 29 (24.8%) 17 (29.3%) 12 (20.3%)

Hypertension 100 (85.5%) 49 (84.5%) 51 (86.4%)

Chronic pulmonary disease (not asthma) 6 (5.1%) 3 (5.2%) 3 (5.1%)

Asthma 4 (3.4%) 1 (1.7%) 3 (5.1%)

Chronic kidney disease (stage 1–4) 92 (78.6%) 47 (81.0%) 45 (76.3%)

Chronic liver disease 12 (10.3%) 5 (8.6%) 7 (11.9%)

Chronic neurological disease 8 (6.8%) 2 (3.4%) 6 (10.2%)

Rheumatoid disease, lupus or psoriasis 5 (4.3%) 5 (8.6%) 0 (0.0%)

Cerebrovascular disease 6 (5.1%) 1 (1.7%) 5 (8.5%)

Diabetes 14 (12.0%) 4 (6.9%) 10 (16.9%)

Current smoker 6 (5.1%) 3 (5.2%) 3 (5.1%)

Asplenia or spleen disease 1 (0.9%) 1 (1.7%) 0 (0.0%)

Malignant neoplasm 25 (21.4%) 9 (15.5%) 16 (27.1%)

Other 105 (89.7%) 52 (89.7%) 53 (89.8%)

Past COVID-19 infectiond (>90 days prior to
enrolment)

11 (9.4%) 7 (12.1%) 4 (6.8%)

SARS-CoV-2 vaccination (at least one dose) 111 (96.5%) 56 (98.2%) 55 (94.8%)

Unknown 2 1 1

Number of SARS-CoV-2 vaccinations

0 4 (3.5%) 1 (1.8%) 3 (5.2%)

1 2 (1.8%) 1 (1.8%) 1 (1.7%)

(Table 1 continues on next page)

Articles
immune deficiency, comorbidity, SARS-CoV-2 variant
causing the current infection, symptoms, SARS-CoV-2
vaccination status and immune response to vaccina-
tion (Table 1). Median follow-up was 182 days (IQR
180–187) and 180 days (IQR 179–184) in the CCP and
the SoC groups, respectively.

Study treatment
Patients in both arms could receive mAbs and antiviral
drugs according to national recommendations and local
availability, as authorised in the study protocol
(Appendix Table S4, Appendix Figure S6). After a me-
dian interval of 4 days from symptom onset, patients in
the CCP group received a median total of 559 ml CCP
(IQR 534–577 ml; Appendix Figure S7), with an anti-
SARS-CoV-2-IgG concentration of 11,104 BAU/ml (IQR
8,453–12,279 BAU/ml) and 81,810 IU/ml (IQR
52,664–120,230 IU/ml) measured by QuantiVac and
Elecsys, respectively (Appendix Figure S8) and good
neutralising capacity (Appendix Figure S9). The major-
ity of donors were most likely infected by Delta, BA.1
and BA.2. CCP units were transfused at a median of 116
days (IQR 66–205 days) after collection (Appendix
Figure S10).

Clinical outcomes
Five patients (8.6%) in the SoC group versus 0 (0%) in
the CCP group were hospitalised for progressive
COVID-19 symptoms (n = 4) (three for dyspnoea and
lung complications and one for fever) or died (n = 1;
after 4 days) within 28 days of randomisation
(p = 0.027, Fisher’s exact test) (Fig. 2a). Events were
rated as COVID-19-related by an adjudication com-
mittee, blinded to treatment allocation. Fig. 2 shows
the primary outcome at day 28 as well as subgroup
analyses with no difference in the subgroups regarding
age, sex and anti-SARS-CoV-2 antivirals. The effect of
CCP was most pronounced in the group that did not
receive monoclonal S-antibody (Fig. 2b).

At day 14, four patients (6.9%) in the SoC group
versus 0 (0%) in the CCP group were hospitalised for
progressive COVID-19 symptoms (n = 3) or died
(n = 1, difference −6.9%, 95% CI −16% to 0.51%,
Appendix Table S5). At day 28, supplemental oxygen
was required by two patients (3.4%) in the SoC group
versus no patients (0%) in the CCP group. At day 180,
two patients in the SoC group (3.4%) and one patient
(1.7%) in the CCP group had died (Appendix Table S5).
All other secondary outcomes are detailed in the
Appendix (Tables S5 and S6, Figure S11).

Adverse events
Thirty-five patients (59%) in the CCP group experienced
78 adverse events and 42 patients (71%) in the SoC
group experienced 87 adverse events (Table 2). Twelve
patients (20%) in the CCP group experienced 14 serious
adverse events and 21 patients (36%) in the SoC group
www.thelancet.com Vol 113 March, 2025 5
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Characteristic Overall
n = 117a

SoC group
n = 58a

CCP group
n = 59a

(Continued from previous page)

2 3 (2.6%) 2 (3.6%) 1 (1.7%)

3 30 (26.3%) 15 (26.8%) 15 (25.9%)

4 75 (65.8%) 37 (66.1%) 38 (65.5%)

Unknown 3 2 1

Time from last vaccine dose to randomisation (days)

Median (Q1; Q3) 234 (168; 335) 240 (144; 366) 218 (176; 329)

Min, max 44, 754 44, 552 107, 754

Unknown 45 23 22

Variant causing the current SARS-CoV-2 infection

Alpha B.1.1.7 0 (0.0%) 0 (0.0%) 0 (0.0%)

Beta B.1.351 0 (0.0%) 0 (0.0%) 0 (0.0%)

Gamma P.1 0 (0.0%) 0 (0.0%) 0 (0.0%)

Delta B.1.617.2 0 (0.0%) 0 (0.0%) 0 (0.0%)

Omicron B.1.1.529 108 (92.3%) 57 (98.3%) 51 (86.4%)

Iota B.1.526 0 (0.0%) 0 (0.0%) 0 (0.0%)

Kappa B.1.617.1 0 (0.0%) 0 (0.0%) 0 (0.0%)

Lambda C.37 0 (0.0%) 0 (0.0%) 0 (0.0%)

Mu B.1.621 0 (0.0%) 0 (0.0%) 0 (0.0%)

Other/unassigned 1 (0.9%) 0 (0.0%) 1 (1.7%)

Unknown/result not clear 5 (4.3%) 1 (1.7%) 4 (6.8%)

Unknown/no sample 3 (2.6%) 0 (0.0%) 3 (5.1%)

VOIse 0.0 (0%) 0.0 (0%) 0.0 (0%)

Omicron variants

BA.1 lineage 0 (0.0%) 0 (0.0%) 0 (0.0%)

BA.2 lineage 29 (26.9) 14 (24.6%) 15 (29.4%)

BA.4 lineage 2 (1.9%) 1 (1.8%) 1 (1.7%)

BA.5 lineage 40 (37.0%) 22 (37.5%) 18 (35.3)

BF.7/BF.14 5 (4.6%) 3 (5.4%) 2 (3.9%)

BQ1/BQ1.1 4 (3.7%) 3 (5.4%) 1 (1.7%)

XBB/XBB.1 18 (16.7%) 11 (19.6%) 7 (13.7%)

EG.5.1. 3 (2.8%) 1 (1.8%) 2 (3.9%)

other 2 (1.9%) 0 (0.0%) 2 (3.9%)

Unknown – result not clear 5 (4.6%) 2 (3.6%) 3 (5.9%)

an (%). bSome patients fulfilled more than one criterion. The intersection between the criteria for immune
deficiency is shown in UpSet plots in Appendix Figure S2. cMedication given up to day 28 (evaluation of
primary endpoint) are listed. Some patients received more than one SARS-CoV-2 medication. The
intersection is shown in UpSet Plots in Appendix Figure S6. dSix of eleven patients received monoclonal
antibodies for treatment of this prior COVID-19 (3 sotrovimab, 3 casirivimab/imdevimab), none received
antivirals. eVariant of interest.

Table 1: Characteristics of the patients at inclusion.

Articles

6

experienced 33 serious adverse events, none were
considered to be related to the study intervention
(Table 2, Appendix Table S7).

SARS-CoV-2 antibodies in patients
On day 3 (Follow-up (FU) visit 1) there was a signifi-
cantly greater increase in serum concentration of pa-
tients’ SARS-CoV-2 antibodies relative to the baseline
value on day 1 (i.e., before CCP administration in the
CCP group), in the CCP group compared to the SoC
group using both the QuantiVac ELISA (Fig. 3a) and
the Elecsys CLIA (Fig. 3b). At further follow-up visits,
there was no significant difference between the groups
(Fig. 3a and b). Neutralisation of the wild-type virus did
not differ between the CCP group and the SoC group
at any follow-up visit in the GenScript surrogate neu-
tralisation test (Fig. 3c), but there was a significant
increase in the neutralisation of Omicron in the CCP
group compared to baseline both on days 3 and 14, but
not on day 28 (Fig. 3d).

In the pseudovirus neutralisation assays the NT50
values in the CCP group versus the SoC group increased
significantly more on day 3 relative to baseline in the
inhibition of BA.2, BA.5 (p < 0.05; Fig. 3e and f),
XBB.1.5 (p < 0.01; Fig. 3g), and BQ.1.1 (p < 0.001;
Fig. 3h). In the pseudovirus neutralisation assays there
was no significant difference between the groups at
further follow-up visits (Fig. 3e–h). In the pseudovirus
neutralisation assays, the NT50 values continued to in-
crease in both groups over time (Fig. 3e–h). The geo-
metric means of the change of serum SARS-CoV-2
antibody concentration and neutralisation capacity on
day 3, day 14, and day 28 for the SoC and CCP groups in
the assays shown in Fig. 3a–h are summarised in
Appendix Table S8.

Viral load in nasopharyngeal swabs and viral
evolution
The viral load in the nasopharyngeal swabs as measured
by PCR decreased over time without significant differ-
ence between the CCP and the SoC groups (Appendix
Figure S12).

Whole genome nanopore sequencing was per-
formed in all cases when virus was detected by PCR.
The percentage of sequences covered per sample
decreased over time (Fig. 4a) and follow-up samples
revealed changes in viral genome sequence which
were not present in baseline samples (Fig. 4b and c),
but with no difference between groups, although
variant proportion evolved dynamically with time
(Fig. 4d and e). New sequence changes were detected
in many genes (Fig. 4f–h), particularly in large genes
as ORF1a, ORF1b and S. New sequence variants
were more common in S than ORF1a and ORF1b,
despite a smaller gene size. Most mutations were
missense or silent single nucleotide polymorphisms
(Fig. 4i–k), with no significant difference between
SoC and CCP groups. There was an accumulation of
new nucleotide variants at mutation sites which were
mutated at baseline (D1) compared to the SARS-
CoV-2 reference sequence (Fig. 4l) but these were
equally distributed between SoC and CCP groups
(Fig. 4m).
Discussion
The COVIC-19 trial shows very high-titre CCP admin-
istered to immunocompromised patients with mild
www.thelancet.com Vol 113 March, 2025
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Fig. 2: Forest plot of absolute risk differences in primary outcome of the mITT group (a) and subgroups (b).

Standard care
(n = 59)a

CCP
(n = 59)a

Total number of adverse events 87 78

Relatedness

Related to intervention 0 (0%) 2 (2.6%)

Unknown 1 2

Outcome

Solved or back to previous status 64 (74%) 58 (74%)

Improvement 9 (10%) 11 (14%)

Worsening 0 (0%) 0 (0%)

Not recovered or stable 4 (4.6%) 1 (1.3%)

Fatalb 4 (4.6%) 1 (1.3%)

Unknown 6 (6.9%) 7 (9.0%)

Number of serious adverse event 33 14

Relatedness

Related to intervention 0/33 (0%) 0/14 (0%)

Unknown 0 0

Outcome

Resolved or back to previous status 22 (67%) 12 (86%)

Improvement 4 (12%) 1 (7.1%)

Worsening 0 (0%) 0 (0%)

Not recovered or stable 2 (6.1%) 0 (0%)

Fatalb 4 (12%) 1 (7.1%)

Unknown 2 (6.1%) 0 (0%)

aAll treated patients with follow up were included in the safety analysis. bOne death occurred in a patient who
was enrolled in error (already hospitalised at time of enrolment due to COVID-19) who was excluded from the
mITT but included in the safety analysis. This patient experienced two serious adverse events.

Table 2: Summary of adverse events through day 180.
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COVID-19 before hospital admission can prevent hos-
pitalisation and/or death. The primary outcome of
hospitalisation and/or death occurred in 5/58 (8.6%) in
immunocompromised patients in the control (SoC)
group and in 0/59 patients (0%) in the CCP group (p-
value 0.027). This trial suggests a role for high-titre CCP
from immunised donors in managing immunocom-
promised patients with COVID-19, given the current
epidemiology of the disease.

Other randomised trials included hospitalised pa-
tients with COVID-19 of whom a subgroup had im-
mune deficiency or cancer,13–16 but did not show
efficacy considering the whole trial population. How-
ever, in the RECOVERY trial those with cancer expe-
rienced a shortened median time to improvement and
superior survival with CCP versus the control arm.15

In the CORIPLASM trial patients with immunodefi-
ciency had a lower odds of death at 14 and 28 days
after CCP although not quite reaching statistical sig-
nificance.16 Also, in the REMAP-CAP trial, CCP
demonstrated potential benefit in participants with
immunodeficiency.14 In a meta-analysis which
included randomised trials, matched cohort studies
and case series, transfusion of CCP was associated
with reduced mortality in immunocompromised
COVID-19 patients.23

Several aspects that distinguish the COVIC-19 trial
from all other previous randomised CCP trials must be
considered when interpreting the results:
www.thelancet.com Vol 113 March, 2025 7
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Fig. 3: Change in serum SARS-CoV-2 antibody concentration and neutralisation capacity of patients through day 28. Change of the anti-
SARS-CoV-2 antibody concentration (panels a–d) and change of the neutralising capacity (panels e–h) in serum of patients on follow up visit 1
(FU1, day 3; red symbols), visit 2 (FU2, day 14; blue symbols), and visit 3 (FU3, day 28; green symbols) compared to baseline measured by anti-
SARS-CoV-2-QuantiVac-ELISA (IgG) (a), Elecsys Anti-SARS-CoV-2 S (b) or Genscript Surrogate Neutralisation Test against wild-type (c) or
Omicron (d) and neutralising titre (50% inhibition of pseudovirus; NT50) measured against BA.2 (e), BA.5 (f), XBB.1.5 (g) or BQ.1.1 (h). Results
are shown for SoC group (light symbols) and the CCP group (bold symbols). For analysis of the course of the anti-SARS-CoV-2 antibodies in the
patients, the difference between the antibody concentrations at the follow-up examinations (follow-up 1, day 3; follow-up 2, day 14; and
follow-up 3, day 28) and the concentration before the start of therapy (baseline) was calculated for each individual patient and each follow-up
time point (Δ from baseline values). Positive values indicate an increase of the antibody concentration or NT50, negative values a decrease of
antibody concentration or NT50 compared to baseline. Horizontal lines indicate the median and error bars the interquartile range. The median
baseline levels of the SoC and CCP groups in the QuantiVac ELISA were 163.6 BAU/ml and 138.3 BAU/ml (n.s.) (see Appendix Figure S5a), in the
Elecsys-Assay 771.0 and 540.0 IU/ml (n.s.) (see Appendix Figure S5b), in the GenScript Assay against wild type 75.9% and 69.3% (n.s.) (see
Appendix Figure S5c) and in the GenScript Assay against omicron 2.2% and 4.0% (n.s.) (see Appendix Figure S5d). The mean baseline NT50
titres in the SoC and CCP groups against BA.2 were 76.3 and 93.8 (n.s.) (see Appendix Figure S5e), against BA.5 were 43.5 and 34.8 (n.s.)
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(i) During the enrolment period the Omicron vari-
ants BA.2, then BA.5, later on XBB/XBB.1 became
prevalent.24 Although, the Omicron lineage pre-
dominated, immunocompromised patients
continued to exhibit a higher risk of progression
to severe COVID-19 compared to the general
population, albeit at substantially lower rates
compared to previous periods.25,26

(ii) In contrast to previous studies of early CCP
treatment2,3,5–7 or trials including immunocom-
promised patients,13–16 in this trial, most partici-
pants (87%) also received other anti-SARS-CoV-2
therapy including anti-SARS-CoV-2 monoclonal
antibodies or antivirals, or both (standard therapy
according to prevailing national recommenda-
tions). The effect of CCP appeared to be more
pronounced in participants who did not receive
monoclonal anti-S antibodies. Although novel
monoclonal antibodies are available in some re-
gions, such as Pemivibart and Sipavibart, recent
studies indicate that these antibodies lose antiviral
efficacy against variants such as KP1.1, LB.1, and
KP3.3.27 However, if they retain even limited ac-
tivity against the variants prevalent in our study
population the monoclonal antibodies might in
part mask the effect of CCP. CCP may still provide
a rapid passive transfer of immunity even in the
presence of monoclonal antibodies. In patients not
treated with monoclonal antibodies, CCP trans-
fusions provide a rapid transfer of humoural im-
munity that can prevent worsening of COVID-19.

(iii) Most participants had received at least 3
vaccinations.

Therefore, this COVID-19 trial studied the efficacy of
CCP in vaccinated patients when other effective, direct
anti-viral treatments were generally available. Due to the
waning pandemic, the number of participants recruited
was lower than estimated in the sample size calculation.
Furthermore, the number of participants reaching the
primary endpoint was lower than assumed in the sam-
ple size calculation due to the combination of low
pathogenicity of the new Omicron variants, the high
proportion of vaccinated participants, and the use of
antivirals and monoclonal antibodies as SoC.

Consistent with the immune deficiency in the trial
population the antibody concentration at baseline was
low compared to non-immunocompromised in-
dividuals.19,28 Furthermore, the increase in antibody ti-
tres in the SoC group as early as day 3 shows the
(see Appendix Figure S5f), against XBB.1.5 were 10 and 10 (n.s.) (see A
Appendix Figure S5h). Geometric means of the change of SARS-CoV-2 an
Appendix Table S8. For each follow visit, the Δ from baseline between th
followed by Dunn’s test for correction of multiple comparisons. The p-va
*p < 0.05, **p < 0.01, ****p < 0.0001.

www.thelancet.com Vol 113 March, 2025
immune response in this vaccinated population irre-
spective of passively transferred antibodies in the CCP
group. Despite impairment in B and T cell memory in
immunocompromised patients,19,29 a serological
response can be boosted in this population by repeated
recall vaccinations and/or temporary withholding of
immunousuppression.29–31

The vaccine-induced immunity was directed against
the wild-type virus, as few patients had received a
vaccination with the new bivalent vaccine (only available
after Sept 2022). In contrast, CCP units afforded high
neutralisation capacity against Omicron. Indeed, the
significant increase of Omicron neutralisation capacity
in the CCP group on day 3 shows a passive transfer of
immunity against Omicron with the transfused CCP.
The difference in neutralisation capacity between the
groups decreased over time, due not only to the natural
immune response, but also the waning of passively
transferred antibodies. This course of antibody titres
over time is similar to a previous study which reported
that titres rose significantly faster in the CCP group than
that of placebo, but there was no difference between
groups after day 14.6 The data from the COVIC-19 trial
shows that a measurable passive transfer of SARS-CoV-
2 antibodies was possible by CCP even given the
vaccine-induced immunisation. We did not observe a
difference in the time to first negative PCR between the
SoC and CCP groups, despite the improved clinical
outcomes of the latter, highlighting that any role of se-
rial PCRs for predicting clinical response in this setting
may be limited. The same discordant observation be-
tween nasal viral load and clinical effect has been
observed with remdesivir, which reduced the hospital
admission rate by 80% but had no effect on nasal viral
load.32

A substantial number of changes in the SARS-CoV-2
genome sequences in a broad range of genes was
detected in patients with SARS-CoV-2 still present dur-
ing follow-up visits as previously described.24,33–35 These
changes have been observed previously, particularly in
immunocompromised individuals with prolonged
infection and treatment with CCP or monoclonal S-
protein antibodies, suggesting that escape mutations are
selected in vivo and passive immunisation of immuno-
compromised patients might promote selection of new
variants.33–36 This possibility has not been studied so far
in the context of a controlled trial. While our data
confirm the substantial viral dynamics in an immuno-
compromised patient population, some of whom also
received monoclonal S-protein antibodies and antivirals,
ppendix Figure S5g), and against BQ.1.1 were 10 and 10 (n.s.) (see
tibody concentrations and neutralisation capacity are summarised in
e SoC group and the CCP group was compared by Kruskal–Wallis test
lues for the pairwise comparisons are p > 0.05 (ns; not significant),
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Fig. 4: Sequencing of SARS-CoV-2 virus from nasopharyngeal specimens of patients. Sequencing was performed with Oxford Nanopore.
Sequences obtained on follow up visit 1 (FU1, day 3), visit 2 (FU2, day 14), and visit 3 (FU3, day 28) were compared to baseline (D1). Sequence
coverage of SARS-CoV-2 genome from nasopharyngeal swabs in the SoC group and the CCP group were compared. Horizontal lines indicate the
mean and error bars the 95% confidence interval of the mean. Mean values were compared between the SoC and the CCP group by Kruskal–
Wallis test followed by Dunn’s test for correction of multiple comparisons. The p-values for all pairwise comparisons were p > 0.05 (not
significant) (a). Panel (b) indicate the count of new acquired mutations compared to baseline (D1). Horizontal lines indicate the mean and error
bars the 95% confidence interval of the mean. Mean values were compared between the SoC and the CCP group by Kruskal–Wallis test followed
by Dunn’s test for correction of multiple comparisons. The p-values for all pairwise comparisons were p > 0.05 (not significant). (c) The
proportion of patients with still detectable SARS-CoV-2 and new mutations in the SoC and CCP group. P-values for comparison of treatment
groups were calculated by Fisher’s exact test and were not significant (p > 0.05), whereas the difference within treatment group during time
was significant (*p < 0.05). Nucleotide variant evolution of new variants compared to baseline data (D1) for SoC (d) or CCP (e) group is
visualised by the frequency of reads with the distinct variant call connected by vertical lines from D1 to FU. (f–h) Proportion of new variants in
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Fig. 4: Continued.

Articles
our trial data provide reassurance that CCP did not
select for mutations associated with reduced suscepti-
bility to monoclonal antibodies or antiviral therapies.

Several previous CCP trials demonstrate a dose ef-
fect with significantly better results only in participants
who had received CCP with higher titres.2,37–40 Thus,
the COVIC-19 trial aimed to provide CCP with very
high titres and broad neutralising capacity. As
confirmed by biochemical assays and neutralisation
assays this has been achieved. Also, the median
transfused volume of CCP (559 ml) transfused in the
COVIC-19 study was about twice as high as in the other
studies on early CCP therapy, which administered
250–300 ml of CCP.2–7

Although neutralising anti-SARS-CoV-2 antibodies have
been proposed as a potential key mechanism of action of
CCP by inhibiting SARS-CoV-2 binding to its receptors on
host cells, other antibody-mediated mechanisms (antibody-
dependent cytotoxicity, antibody-dependent phagocytosis,
complement-dependant cytotoxicity) and effects by non-
antibody components in CCP leading to modulation of
T cells, B cells or dendritic cells, cytokine release und the
complement and coagulation systemsmight also contribute
to its overall effect.41–43
SARS-CoV-2 genes were calculated for every sample with at least one new
were calculated for every sample with at least one new variant. (f–k)
compared between treatment groups SoC and CCP and showed no signifi
test for correction of multiple comparisons. (l) For the analysis we only
baseline (D1). Among those, we calculated the proportion of mutations l
comparison to the Wuhan reference sequence. Depicted are means with e
compared between SoC and CCP treatment and showed no significant di
correction of multiple comparisons.

www.thelancet.com Vol 113 March, 2025
Potential limitations of the study include the sample
size, a fragility index of 1 and the possible bias due to
the open label design.

CCP was well tolerated. There was no evidence that
the frequency, severity, type and outcome of AEs or
SAEs in CCP group differed from the SoC group,
indeed there were fewer AEs and SAEs in the CCP
group. Like previous studies, this study does not indi-
cate any new safety issues when very high-titre CCP is
administered to patients with COVID-19.1,44

To conclude, this trial provides evidence that very
high-titre, contemporaneous CCP remains an immedi-
ate treatment option for vulnerable immunocompro-
mised patients, that remain at risk of progression to
severe disease. Furthermore, in the event of another
pandemic, where clinically effective passive humoural
immunity is plausible, this study and others, makes it
clear that randomised trials to define the efficacy of early
administration of convalescent plasma for patients who
are unable to mount their own rapid immune response
would be valuable at an early stage. Finally, this trial
demonstrates that effective therapy, using plasma from
“superimmunised” donors with the highest possible
antibody, is feasible as the pandemic evolves.
variant. (i–k) Frequencies of different mutation types of new variants
Means (horizontal line; error bars = 95% confidence interval) were
cant difference calculated by Kruskal–Wallis test followed by Dunn’s
considered samples with at least one new mutation compared to
ocalised at sites that already exhibited mutations at baseline (D1) in
rror bars as 95% confidence interval. (m) Variants depicted in L were
fference calculated by Kruskal–Wallis test followed by Dunn’s test for
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