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Renin-angiotensin system (RAS) dysregulation is an important component of the complex 
pathophysiology of SARS-CoV-2 and other coronavirus infections. Thus, angiotensin-converting 
enzyme 2 (ACE2), the entry receptor and key to the alternative RAS, was proposed as a severity/
prognostic biomarker for risk-stratification. However, experimental RAS data from diverse cohorts 
are limited, particularly analyses integrating RAS with immune biomarkers. Participants (n = 172) in 
Cape Town were sampled longitudinally (including a recovery timepoint [> 3-month]), across WHO 
asymptomatic to critical severity. Using fluorometric assays and LC-MS/MS RAS Fingerprinting®, 
results show serum ACE1 activity significantly decreases with increasing COVID-19 severity (P < 0.01) 
and mortality (P < 0.05), while increased ACE2 activity is associated with worse severity (P < 0.01). 
Neither enzyme activity correlates with viral load proxy or nasal ACE mRNA levels. ACE1 and 
ACE2 activities were the most effective severity biomarkers compared to 96 established immune 
markers obtained via proximity extension assay, as demonstrated by principal component analysis. 
A multivariate variable selection model using random forest classification identified biomarkers 
discriminating COVID-19 severity (AUC = 0.82), the strongest being HGF, EN-RAGE, cathepsin 
L. Adding ACE1 activity and anti-SARS-CoV-2 antibody titres improved differentiation between 
ambulatory and hospitalised participants. Notably, RAS dysregulation has unique severity associations 
in coronavirus infections with implications for treatment and pathophysiological mechanisms.
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The broad range of clinical manifestations of COVID-19 has highlighted the importance of looking beyond 
traditional immune mediators to understand and manage the complex pathophysiology of SARS-CoV-2 and 
other coronavirus infections. An important component of this broader approach unique to coronaviruses is 
angiotensin converting enzyme 2 (ACE2), the primary SARS-CoV entry receptor1, which is also key to the 
alternative, counter-regulatory arm of the renin angiotensin system (RAS) (Fig. 1). The direction of the RAS 
disturbance by SARS-CoV-2 infection is debated, with early hypotheses proposing that ACE2 is downregulated 
due to viral entry and receptor internalisation2, and some smaller studies finding no significant changes in 
RAS parameters3. However, recent work suggests ACE2 activity and concentration are increased in severe 
COVID-194,5, with other tissue-level data finding upregulated ACE2 expression in lung parenchyma and fluid of 
COVID-19 patients6,7. The dysregulation of the key classical RAS enzyme ACE1 is less clearly characterised, with 
limited data suggesting ACE1 activity is downregulated, while ACE1 concentration is poorly correlated with its 
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activity4,8. Accurate study of the RAS is challenging, with several pre-analytical and analytical obstacles and thus 
this COVID-19 data remains limited.

As a treatment target, soluble ACE2 has been proposed as a decoy receptor and inhaled therapy continues to 
be studied in clinical trials9. Several meta-analyses of ACE inhibitors (ACEi) and angiotensin receptor blockers 
(ARB) indicate that continued use causes no harm and could have possible benefit in treating COVID-1910,11. 
Further therapeutic interventions targeting the RAS, particularly ACE2, may still prove essential for mitigating 
RAS dysregulation and disease progression in coronavirus infections, making ongoing research in this area 
important.

Several unanswered questions remain, including whether RAS dysregulation is an important discriminator 
of severity compared to well-established inflammatory markers, such as interleukin 6 (IL-6)12, receptor for 
advanced glycation end-products (RAGE) and its ligand, extracellular newly identified RAGE binding protein 
(EN-RAGE), hepatocyte growth factor (HGF)12, and programmed cell death ligand 1 (PD-L1)13. Several of 
these proteins suggest that a myeloid derived suppressor cell (MDSC) program is important in COVID-19 
pathophysiology, which may have complex interactions with the RAS14,15.

In this study, we investigated serum RAS profiles, integrated with 96 immune and cardiovascular biomarkers, 
across the spectrum of COVID-19 disease severity from asymptomatic to critical in a young South African 
cohort. This is the first COVID-19 cohort from Sub-Saharan Africa focused on experimental RAS data, to 
the best of our knowledge. Findings include that the ACE2/Ang1-7 axis is significantly increased in severe 
COVID-19, while the classical RAS is significantly decreased. Moreover, when modelled in the context of known 

Fig. 1.  A simplified schematic of the basic components of the renin angiotensin system, including the major 
peptides, enzymes and receptors. ACE1 angiotensin converting enzyme 1, ACE2 angiotensin converting 
enzyme 2, ARDS acute respiratory distress syndrome, AT1R angiotensin II type 1 receptor, AT2R angiotensin 
II type 2 receptor, MasR Mas receptor, NEP Neprilysin (also known as neutral endopeptidase), PEP prolyl 
endopeptidase.
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clinical and inflammatory predictors of severity, serum ACE1 and ACE2 – poorly correlated to upper airway 
viral loads – remain key discriminators of COVID-19 severity.

Results
Patient cohort
Adult patients with COVID-19 were recruited (n = 196) from Groote Schuur Hospital (GSH), Cape Town, 
South Africa. These patients were either admitted to the COVID-19 wards, or non-hospitalised outpatients 
from the on-site walk-in testing centre, along with a cohort of asymptomatic healthcare workers from the 
Bacillus Calmette–Guérin (BCG) vaccine trial16 (n = 29) during 2020 and 2021. Participants with the most 
complete data were selected for further analysis (n = 172) and were not different from the full set of participants 
(Supplementary Table S1). The selection process is fully described (Supplementary Fig. S1). Participants were 
recruited before COVID-19 vaccines became widely available to the public in South Africa, thus this cohort 
was unvaccinated. Infections occurred with SARS-CoV-2 wildtype (D614G) (33.57%), Beta (39.16%) or Delta 
(17.48%) variants as determined by either viral sequencing (n = 45) or based on the dominant circulating 
variant during sampling17. The disease severity in the cohort ranged from asymptomatic to critical, according 
to the World Health Organisation (WHO) COVID-19 disease severity classification (Supplementary Table 
S2)18. Participants were grouped into four severity groups: asymptomatic (n = 33), National Institute of Allergy 
and Infectious Diseases (NIAID) 1–2 (n = 39) (non-hospitalised, WHO mild-moderate disease), NIAID 3–5 
(n = 50) (hospitalised, WHO moderate-severe disease), NIAID 6–7 (n = 50) (hospitalised, WHO critical disease). 
Alternatively, severity was categorized as either ambulant (asymptomatic + NIAID 1–2) or hospitalised (NIAID 
3–5 + NIAID 6–7) (Supplementary Table S3).

On average, there were three sampling timepoints per participant across the course of disease, and the 
timepoint of worst clinical severity was used for further analysis, except where otherwise stated. In addition, at 
a recovery timepoint 3–18 months post-disease another sample was collected (n = 98) and/or clinical follow-up 
occurred. This functioned as an individualised non-illness control timepoint, particularly for RAS data. During 
sampling, blood, saliva and nasal scrapings were collected. Serum was used to measure RAS peptides (via mass 
spectrometry), enzyme activities (using fluorometric assays), immune proteomic signatures (via Olink Proximity 
Extension Assay) (n = 161), and anti-spike (via ELISA) and anti-nucleocapsid antibody titres (using a cell-based 
assay), while nasal scrapings were used (n = 48) to determine transcriptomic signatures at the site of disease.

The clinical characteristics of the cohort are described in Table 1. The mean age of the cohort was 47 ± 13 
years, with the ambulant group (asymptomatic/NIAID 1–2) being younger than the hospitalised participants 
(NIAID 3–5/6–7) (35 and 44 years vs. 54 and 50 years, P < 0.001). Hospitalised participants also had a longer 
duration of symptoms prior to baseline sampling compared to ambulant participants with mild disease (NIAID 
1–2) (8 and 10 vs. 5 days, P < 0.001), but the time from admission/testing to baseline sampling was not different 
between ambulant and hospitalised groups. Average illness duration was similar at the worst point of illness 
sampled, except in the critical group where the median duration and interquartile range (IQR) was longer than in 
other groups (P < 0.001). There were no differences between groups in terms of body mass index (BMI) (median 
(IQR)): 30.5 kg/m2 (26.4;37.0) P = 0.07), gender (59% female (101/172), P = 0.17) or smoking history (P > 0.1). 
Participants who died made up 9.9% (17/172) of the cohort, and 30% (15/50) of the critical NIAID 6–7 group.

The most common symptoms reported were dyspnoea (68.6%, 118/172), cough (62.2%, 107/172), fever and 
fatigue (both 44.8%, 77/172), and myalgia (23.8%, 41/172). Significantly more NIAID 3–5/6–7 (hospitalised) 
participants vs. NIAID 1–2 (mild, ambulant) participants had gastrointestinal symptoms (26% and 28% vs. 
8%, P = 0.045), or dyspnoea (96% and 100% vs. 51%, P < 0.001). More hospitalised participants than ambulant 
participants had hypertension (both 54% vs. 36% and 6%) or diabetes (both 40% vs. 20% and 9%) (P < 0.005), 
but rates of comorbidities such as dyslipidaemia or HIV were not different. There were an increased number 
of participants using ACEi (P = 0.004) or statins (P = 0.03), respectively, but not ARB (P = 0.4), in groups with 
more severe disease. Routine laboratory parameters were primarily measured in hospitalised patients and were 
not different between severity groups (Supplementary Tables S5 and S6). Differential counts and c-reactive 
protein (CRP) were not consistently ordered for COVID-19 patients at GSH (see Supplementary Methods and 
Supplementary Figs. S2 & S3 for management guidelines at the time)19. Thus, there is significant missing data for 
these two parameters, and to a lesser extent for D-dimer. Participant clinical characteristics were also assessed 
by viral variant (Supplementary Table S7) and in comparison to the subset of participants selected for Olink 
analysis, which were not different (Supplementary Table S8).

RAS dysregulation in COVID-19
ACE1 and ACE2 activity were measured in serum both via direct fluorometric enzyme activity assay (hereafter 
referred to as ACE1 activity and ACE2 activity), and via equilibrium LC-MS/MS measurement of RAS peptides 
(pmol/L), which were then used as a proxy for each enzyme’s activity4 and presented as a product/substrate unit-
less ratio (hereafter referred to as ACE-S and ALT-S, respectively).

Median ACE1 activity and ACE-S both significantly decreased (P < 0.01 and P < 0.05, respectively) with 
increasing COVID-19 severity (ACE1 activity (nmol/min/mL) – asymptomatic: 33.71 vs. NIAID 1–2: 24.7 vs. 
NIAID 3–5: 23.79 vs. NIAID 6–7: 18.32; ACE-S – asymptomatic: 2.66 vs. NIAID 1–2: 2.42 vs. NIAID 3–5: 1.84 vs. 
NIAID 6–7: 0.82) (Fig. 2a). The ACE1 activity of both asymptomatic and critical (NIAID 6–7) participants were 
significantly different from all other severity categories (P < 0.01), which was also reflected by ACE-S (P < 0.05), 
except that ACE-S was not significantly different between asymptomatic and NIAID 1–2 groups. This pattern 
remained the same when the median activity was evaluated as a fold-change normalised to the relevant parameter 
at each participant’s recovery visit (Supplementary Fig. S5). ACE1 activity fold change was approximately 40% 
lower in hospitalised participants compared to asymptomatic participants, and although similar in effect size, 
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Characteristics
Total cohort, 
n = 172

Asymptom-
atic, n = 33

NIAID 1–2: 
moderate 
home /mild, 
n = 39

NIAID 3–5: 
severe/moderate 
hospital, n = 50

NIAID 6–7: 
critical, n = 50

P-
value

Age in years, mean (sd)b 47 (13) 35 (11) 44 (14) 54 (10) 50 (11) < 0.001

Female, n (%) 101 (58.7) 24 (72.7) 23 (59.0) 24 (48.0) 30 (60.0) 0.168

BMI, med (IQR)c 30.5 
(26.4–37.0) 31.3 (26.4–36.7) 28.5 (25.3 – 

33.4) 30.0 (26.4 – 35.0) 34.1 
(30.5–38.4) 0.074

Smoking status

 Current smoker, n (%) 17 (10.6) 2 (6.1) 8 (22.2) 4 (8.9) 3 (6.5) 0.131

 Previous smoker, n (%)a 23 (18.1) NA 4 (11.1) 11 (24.4) 8 (17.4) 0.278

COVID-19 related

 Dominant variant, n (%)a

  Wildtype 48 (34.5) NA 17 (43.6) 21 (42.0) 9 (18.0)

0.002
  Beta 56 (40.3) NA 6 (15.4) 22 (44.0) 26 (52.0)

  Delta 25 (18.0) NA 11 (28.2) 5 (10.0) 8 (16.0)

  Uncertain (Beta/Delta) 14 (10.1) NA 5 (12.8) 2 (4.0) 7 (14.0)

 Symptom duration prior to baseline sampling, days med (IQR)a c 7 (5–10) NA 5 (5–7) 8 (6–10.8) 10 (7–12) < 0.001

 Days from admission, or PCR test, to baseline sampling, med (IQR)a c 2.5 (2–5) NA 2 (2–4) 2 (2–4.8) 3 (1.2–5.8) 0.338

 Symptom duration prior to worst sampling timepoint, days, med (IQR)a c 8 (6–12) NA 7 (5–8) 8 (6–11.8) 12 (8–17) < 0.001

 Days from admission, or PCR test, to worst sampling timepoint, med (IQR)a c 4 (2–7) NA 3 (2–6) 3 (2–5) 5 (3–10.5) 0.001

 Symptoms, n (%)a

  Cough 107 (62.2) NA 30 (76.9) 38 (76.0) 39 (78.0) 0.972

  Fever 77 (44.8) NA 19 (48.7) 27 (54.0) 31 (62.0) 0.446

  Shortness of breath 118(68.6) NA 20 (51.3) 48 (96.0) 50(100.0) < 0.001

  Fatigue 77 (44.8) NA 28 (71.8) 24 (48.0) 25 (50.0) 0.052

  Malaised 13 (7.6) NA 0 (0.0) 6 (12.0) 7 (14.0) 0.058

  Myalgiad 41 (23.8) NA 10 (25.6) 16 (32.0) 15 (30.0) 0.806

 Headached 22 (12.8) NA 8 (20.5) 2 (4.0) 12 (24.0) 0.015

  GIT symptomsd 30 (17.4) NA 3 (7.7) 13 (26.0) 14 (28.0) 0.045

 PaO2/FiO2 ratio, med (IQR) 141 (69–257) NA NA 263 (195–312) 73 (56–85) NA

 Heart rate on admission or at testing, med (IQR)a c 101 (82–110) NA 73 (64–91) 105 (88–114) 102 (90–109) 0.001

 Respiratory rate on admission or at testing, med (IQR)a c 26 (22–32) NA 18 (18–20) 25 (22–30.2) 28 (26–34) < 0.001

 High flow nasal oxygen, n (%) 31 (18.02) 0 (0.0) 0 (0.0) 0 (0.0) 31 (62.0) NA

 Intubated, n (%) 11 (6.4) 0 (0.0) 0 (0.0) 0 (0.0) 11 (22.0) NA

 COVID-19 related death, n (%)e 17 (9.9) 0 (0.0) 0 (0.0) 2 (4.0) 15 (30.0) < 0.001

Medical comorbidities

 Hypertension, n (%) 70 (40.7) 2 (6.1) 14 (35.9) 27 (54.0) 27 (54.0) < 0.001

 Diabetes Mellitus type 2 (DMT2), n (%) 51 (29.6) 3 (9.1) 8 (20.5) 20 (40.0) 20 (40.0) 0.004

  Newly diagnosed, n (% of DMT2)e 11 (21.6) 0 (0.0) 0 (0.0) 7 (35.0) 4 (20.0) 0.160

 Dyslipidaemia, n (%)f 14 (8.1) 0 (0.0) 3 (7.7) 4 (8.0) 7 (14.0) 0.158

 Asthma, n (%)f 11 (6.4) 1 (3.0) 5 (12.8) 3 (6.0) 2 (4.0) 0.286

 HIV, n (%) 9 (5.3) 0 (0.0) 2 (5.3) 6 (12.0) 1 (2.0) 0.060

 Cardiac disease, n (%)f 7 (4.1) 0 (0.0) 2 (5.1) 3 (6.0) 2 (4.0) 0.507

 Cancer history, n (%)f 9 (5.2) 1 (3.0) 2 (5.1) 6 (12.0) 0 (0.0) 0.054

 Medication use, n (%)

Continued
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Fig. 2.  Serum ACE1 and ACE2 enzyme activities are dysregulated in COVID-19 and are correlated with 
disease severity. (a) ACE1 enzyme activity and enzyme activity based on equilibrium RAS peptide (ACE-S) 
levels decrease significantly with COVID-19 severity. (b) ACE2 enzyme activity and enzyme activity based on 
equilibrium RAS peptide (ALT-S) levels increase significantly with COVID-19 severity; see Supplementary 
Figure S4 for full figure of ACE2 enzyme activity with all outliers (n = 12) present (no change in significance). 
The boxplot is arranged as follows: central line for each box: median, box limits: 1st and 3rd quartiles, 
whiskers: 1.5x interquartile range, points beyond whiskers: outliers. p-value significance levels: ****p < 0.0001, 
***p < 0.001, **p < 0.01, *p < 0.05, non-significant: not shown.

 

Characteristics
Total cohort, 
n = 172

Asymptom-
atic, n = 33

NIAID 1–2: 
moderate 
home /mild, 
n = 39

NIAID 3–5: 
severe/moderate 
hospital, n = 50

NIAID 6–7: 
critical, n = 50

P-
value

  ACEi 22 (12.8) 0 (0.0) 4 (10.3) 5 (10.0) 13 (26.0) 0.004

  ARB 8 (4.6) 0 (0.0) 2 (5.1) 2 (4.0) 4 (8.0) 0.403

  Statin 24 (14.0) 0 (0.0) 4 (10.3) 10 (20.0) 10 (20.0) 0.032

  Steroids (incl. acutely) 97 (56.4) 1 (3.0) 0 (0.0) 46 (92.0) 50 (100.0) < 0.001

  NSAIDs 19 (11.0) 0 (0.0) 9 (23.1) 6 (12.0) 4 (8.0) 0.016

Table 1.  Clinical characteristics of participants. Proportions reported with available data as denominator. 
Number of participants with available data for each characteristic indicated in Supplementary Table S4. 
P-values for categorical data were calculated using an N-1 (E.Pearson) Chi-squared test across all 4 severity 
groups (excluding total), except where otherwise stated. aP-value calculated excluding asymptomatic group 
(across the 3 remaining severity groups); data not available/excluded (n < 5). bP-value calculated using ANOVA 
across all 4 severity groups (excluding total). cP-value calculated using Kruskal-Wallis test across all 4 severity 
groups (excluding total). dThese symptoms were reported under the question: “Which symptoms have you 
experienced? Choice = Other (specify)”. eP-value calculated using Fisher Exact Test across all 4 severity groups 
(excluding total). fThese conditions were reported under the question: “Other chronic illnesses (specify)”. ACEi 
ACE-inhibitor, ARB angiotensin receptor blocker, BMI body mass index, GIT gastrointestinal, GIT symptoms 
any of nausea and/or vomiting and/or diarrhoea, HIV human immuno-deficiency virus, IQR interquartile 
range, med median, NA not available, NIAID National Institute of Allergy and Infectious Diseases ordinal 
scale, PaO2/FiO2 ratio of arterial partial pressure of oxygen to fraction of inspired oxygen, sd standard 
deviation.
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for ACE-S this was reduced to a non-significant trend after adjusting for multiple comparisons, except between 
asymptomatic and NIAID 3–5 groups (0.87 vs. 0.475, P = 0.018).

Conversely, median ACE2 activity and ALT-S both significantly increased (P < 0.01 and P < 0.05, respectively) 
with increasing COVID-19 severity, with the greatest differences observed between hospitalised and ambulant 
groups (ACE2 activity (pmol/min/mL) – asymptomatic: 4.82 vs. NIAID 1–2: 3.78 vs. NIAID 3–5: 7.86 vs. NIAID 
6–7: 10.74; ALT-S – asymptomatic: 0.06 vs. NIAID 1–2: 0.05 vs. NIAID 3–5: 0.06 vs. NIAID 6–7: 0.08) (Fig. 2b). 
These findings were consistent when evaluating ACE2 activity and ALT-S fold change, calculated as above 
(Supplementary Fig. S5); ACE2 activity increased by 2.5 times (250%) in critical disease and 1.8 times (180%) 
in NIAID 3–5 participants compared to in the ambulant group, and ALT-S increased by 1.75 times (175%), 
although this parameter did not increase in moderate/severe hospitalised (NIAID 3–5) vs. ambulant participants, 
but rather in critical NIAID 6–7 participants. These results (for both ACE1 and ACE2 activities) were further 
confirmed to be consistent over the course of disease from relatively early in hospital admission, particularly 
as biomarkers for differentiating critical disease from non-critical COVID-19 illness (Supplementary Figs. S6 
& S7). Neither ACE1 nor ACE2 activities varied in participants sampled at ≤ 7 days vs. > 7 days from symptom 
onset in this dataset (Supplementary Fig. S8). In addition, results were analysed across different SARS-CoV-2 
variants within severity groups, but no significant differences were seen between strains (Supplementary Fig. S9).

When RAS parameters were analysed according to hypertension status (yes/no) and according to RAS-
modifying drug use (i.e. ACEi/ARB), similar results were seen in non-hypertensive participants (Supplementary 
Fig. S10). Even in hypertensive participants, either using ACEi/ARB (Supplementary Fig. S11) or not 
(Supplementary Fig. S12), ACE2 activity tended to increase with increasing COVID-19 severity, but this trend was 
not statistically significant. ACE1 activity tended to decrease with increasing severity, but this trend disappeared 
in participants on ACEi/ARB. This lack of significance in hypertensive participants could be due to a much 
smaller sample size, especially for those on ACEi/ARB, or due to the lack of an asymptomatic comparison group, 
as only two of the asymptomatic participants in this cohort had hypertension and neither were using ACEi/ARB.

Gene expression was measured in nasal mucosa scrape samples and analysed for a subset of participants 
(n = 48) (Fig. 3). Neither ACE nor ACE2 mRNA levels in the nasal mucosa were significantly different between 
COVID-19 severities (P = 0.327). Furthermore, there was no correlation between serum enzyme activity and 
nasal mucosal scrape mRNA expression of ACE1 (R = 0.27, P = 0.073) or ACE2 (R=-0.09). There was also no 
correlation between ACE2 activity (r2 = 0.013) nor ACE1 activity (r2 = 0.0005) and SARS-CoV-2 CT value 
(n = 68, from routine diagnostic samples), respectively (Supplementary Fig. S13). Since CT value is inversely 
correlated with viral load20, this indicates that RAS dysfunction is not merely a proxy for viral load, but a separate 
pathophysiological phenomenon in COVID-19.

Surprisingly, despite the mutual association with COVID-19 severity, neither RAS peptide parameter was 
highly correlated with its respective ACE enzyme activity (Supplementary Fig. S14). ACE-S was very poorly 
correlated to ACE1 activity in the whole cohort (r2 = 0.17), and even less in subgroup analyses, except in all 
non-hypertensive participants (r2 = 0.30) and in asymptomatic non-hypertensive participants (r2 = 0.41). The 
correlation between ALT-S and ACE2 activity was similar (r2 = 0.32).

Integrated immune and RAS signatures
To assess the importance of RAS dysregulation in COVID-19 pathophysiology compared to more well-
established biomarkers, we conducted an integrated analysis of the RAS data for this cohort with serum immune 
proteomic data (96 proteins), which was available for most participants (n = 161), Fig. 4.

Principal component analysis (PCA) revealed that this integrated data discriminated clearly between 
severity groups (Fig. 4a), and especially between ambulant and hospitalised participants (Fig. 4c). Grouping 
by COVID-19 severity levels was statistically significant (r2 = 0.21, P < 0.01) when analysed by permutational 
multivariate analysis of variance (PERMANOVA) with the model adjusted for time from symptom onset and 
sample random effects. These groups were also clearly discriminated by unsupervised cluster analysis (Fig. 4b), 
with cluster 2 primarily representing ambulant COVID-19 participants. The most discriminatory factors 
separating clusters after age were ACE2 and ACE1 activity, respectively (Fig. 4d). Other important discriminators 
included cathepsin L (CTSL1), which is an endosomal protease involved in SARS-CoV-2 cell entry21, markers 
of MDSCs, such as PD-L1 and galectin-9 (Gal-9), and cytokines counteracting the MDSC signal, such as HGF, 
CUB domain-containing protein 1 (CDCP1), IL-1 receptor antagonist protein (IL-1Ra) and IL-7, as well as 
those counteracting key COVID-19 pathologies, such as pro-adrenomedullin (ADM). The levels of the analytes 
included in the PCA were visualised by heatmap using an unsupervised hierarchical clustering approach, which 
revealed protein groups whose levels differed between ambulant and hospitalised participants (Fig.  4e). The 
proteins that clearly differentiated these groups and were significantly higher in hospitalised participants include 
anti-SARS-CoV-2 antibody titres (anti-spike and anti-nucleocapsid), and MDSC markers, such as EN-RAGE 
and oncostatin-M (OSM), anti-MDSC markers, such as HGF, and cytokines contributing to key COVID-19 
pathology, such as tumour necrosis factor ligand superfamily member 14 (TNFSF14). Biomarkers that were 
lower in hospitalised participants include TNF-related activation-induced cytokine (TRANCE, also known 
as RANKL), tumour necrosis factor beta (TNFB), IL-12 subunit beta (IL-12B), and neurotrophin-3 (NT-
3). Interestingly, IL-8, C-C motif chemokine 3 (CCL3), and CCL4 are increased primarily in asymptomatic 
participants (Supplementary Table S10).

To directly test the ability of RAS and other proteomic biomarkers to define COVID-19 severity, we used 
a multivariate unbiased variable selection model (hereafter, multivariate severity model)22, both with and 
without ACE1 and ACE2 activity and the other laboratory/clinical variables (Fig. 5). The model performed well, 
with a high specificity and sensitivity, particularly when discriminating between ambulatory and hospitalised 
participants (AUC = 0.82).
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The addition of ACE1 and ACE2 activity to the model, as well as anti-SARS-CoV-2 antibody titres, improved 
the ability of the model to predict severity between ambulatory and hospitalised participants, but slightly 
worsened the discrimination between different severity groups within the hospitalised category. Among the 
key proteins driving the predictive models, the top 5 proteins remained the same as the previous model. The 
anti-spike and anti-nucleocapsid anti-SARS-CoV-2 antibody titres as well as ACE1 activity were in the top 15 
biomarkers of the second model, but ACE2 activity was not.

Many of the top immune biomarkers in these models are the same as the ones identified in the heatmap in 
Fig.  4e. These include markers of SARS-CoV-2 entry (CTSL1), MDSCs (EN-RAGE), markers counteracting 
MDSC signals (HGF, IL-7, ADM) and markers of interferon-secreting pathways (IL-12 subunit p40 (IL-12B)). 
While still selected, CCL3, Gal-9, OSM, IL-8, and TRANCE were less important in the predictive models 
compared to the PCA.

Prognostic markers
Finally, the associations with survival were evaluated (Fig. 6). This analysis was restricted to severe and critical 
groups, namely patients with a clear clinical risk of mortality, to avoid highlighting biomarkers for severity 
instead of specifically for survival (Supplementary Fig. S15 shows all severities). In this subset, ACE1 activity 
was significantly lower in deceased compared to survivors (median: 15.6 vs. 19.7 nmol/min/mL, P = 0.029), but 
the difference in ACE-S was not statistically significant between groups, nor was ACE2 activity or ALT-S altered. 
Three immune biomarkers were significantly increased in deceased participants after adjusting for multiple 
comparisons, namely CCL20, IL-17 C and osteoprotegerin (OPG, a decoy receptor for TRANCE). In survivors, 
both CD244 and chymotrypsin-C were significantly elevated.

Fig. 3.  ACE1 and ACE2 gene expression levels in the nasal mucosa are not significantly altered across disease 
severity in COVID-19, nor correlated to serum enzyme activity, in this smaller subset of the cohort. (a) ACE1 
mRNA levels vs. COVID-19 severity at time of sampling; (b) ACE2 mRNA levels vs. COVID-19 severity at 
time of sampling; (c) Serum ACE1 activity lacks correlation with ACE1 gene expression in the nasal mucosa; 
(d) Serum ACE2 activity lacks correlation with ACE2 gene expression in the nasal mucosa. The boxplot 
is arranged as follows: central line for each box: median, box limits: 1st and 3rd quartiles, whiskers: 1.5x 
interquartile range, points beyond whiskers: outliers. Asymptomatic*: Includes data from asymptomatic & 
recovery timepoints. Correlations were calculated using Spearman’s Rho. Non-significant p-values not shown.
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Discussion
Viruses cause pathology via direct cytopathy with associated tissue damage, via secondary immune damage and 
perturbations of normal host physiology. The SARS-CoV-2 pandemic highlighted the importance of immune-
driven tissue injury, as well as the role of RAS dysregulation in viral infections, since coronavirus infections 
utilise ACE2 as entry receptor1. The preanalytical and analytical complexities of studying the RAS has meant 
robust data has been slow to accumulate across diverse populations, with limited attempts to integrate RAS 
and immune dysregulation as potentially independent drivers of COVID-19 disease severity. Our findings 
make important contributions by confirming that increasing ACE2 and declining ACE1 enzymatic activities 
(not just serum concentration) are associated with severe COVID-19, determined by both peptide equilibrium 
fingerprinting and enzymatic measurement. Furthermore, our data shows COVID-19 ACE1/ACE2 enzymatic 
dysregulation is not simply a proxy of nasal viral load or ACE1/ACE2 gene expression. Integration of RAS with 
immunoproteome and clinical severity predictors highlight the relevant predictive ability of particularly ACE1 
decrease in COVID-19 severity and mortality.

Increased ACE2 activity was associated with increased COVID-19 severity, which is consistent with several 
existing studies across different populations. Fagyas et al.23 found that increased ACE2 activity was significantly 
correlated with disease severity independent of comorbidities (many of which increase ACE2 activity), both in 
SARS-CoV-2 infection and in severe sepsis matched controls. These findings were similar in other studies4,24, 
which also measured ACE2 plasma concentration, finding a strong correlation with activity4. A few studies have 
found lower or not significantly different ACE2 levels between severity groups5,25,26. While not all differences 
have clear explanations5, main considerations for differences include: (i) small sample sizes3,25, (ii) exclusion 
of key comorbidities linked to both COVID-19 severity and increased ACE2 levels26, and (iii) problematic 
comparator groups including SARS-CoV-2 PCR negative controls with respiratory symptoms26, or participants 
sampled late in the disease course25. Overall, the majority of the published literature supports an increased 
serum ACE2 activity and/or concentration with increasing disease severity, which normalises over several 
months during recovery27.

Leading explanations for this increased serum ACE2 activity include an upregulation in tissues, as supported 
by single cell transcriptomic work in lungs7 and bronchoalveolar lavage fluid (BALF)6, and potentially increased 
cleavage of ACE2 from the cell surface. The mechanism of the latter could be multi-factorial including that: (i) 
cytokines increased in COVID-19, such as IL-1β and TNF-α, increase ACE2 shedding;28 (ii) direct SARS-CoV 

Fig. 4.  Integrated immune and RAS COVID-19 severity signatures. (a–c) PCA plots of RAS enzyme activity 
data integrated with immune proteomic data (n = 96 proteins), along with anti-SARS-CoV-2 antibody titres 
(against spike & nucleocapsid proteins), symptom duration, age and BMI as covariates. These data were able to 
discriminate between COVID-19 severity groups, both when assigned and with unsupervised cluster analysis, 
with the models adjusted for time from symptom onset and sample random effects. (a) PCA discriminating 
COVID-19 severity groups; (b) PCA with unsupervised clustering; (c) PCA discriminating between ambulant 
and hospitalised groups; (d) Key biomarkers contributing to differences between clusters in the PCA plots. (e) 
Heatmap of the data used for the PCA plots, compared to clustering of severity groups from (a), PCA clusters 
from (b) and clustering of ambulant vs. hospitalised groups from (c). Blue-to-red colour range represents low 
to high relative levels of the variables. CTSL1 cathepsin L, Gal_9 galectin 9, CCL23 C-C motif chemokine 23, 
ADM adrenomedullin, CDCP1 CUB domain-containing protein 1, MCP_3 Monocyte chemotactic protein 3, 
HGF hepatocyte growth factor, See Supplementary Table S9 for full list of proteins and Supplementary Table 
S10 for the full list of significantly altered biomarkers.
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viral effects may increase shedding, as these viruses activate a disintegrin and metalloprotease 17 (ADAM17)29, 
which sheds the enzymatically active ACE2 ectodomain from the cell membrane;30 and (iii) MDSCs express 
ADAM1731, and with their upregulation, may increase ACE2 shedding. Additionally, Ang II also activates 
ADAM17 in a local positive feedback mechanism32. These factors may all contribute towards the increased 
serum ACE2 activity observed with increasing COVID-19 severity, and need further research. In contrast to 
other transcriptomics studies using COVID-19 lung samples and BALF6,7, we did not see a significant change 
in nasal mRNA levels of either ACE2 or ACE. While some other studies have also found no differences between 
severity groups33, our findings may be the result of a limited number of nasal transcripts, or because the nasal 
epithelium, although part of the respiratory tract, could behave differently to lung tissue.

The dysregulation of ACE1 activity is less clearly characterised, but our findings are generally in line with 
the limited published experimental studies. For example, the first published study measuring ACE1 activity in 
COVID-19 showed that ACE1 activity was lower in 136 COVID-19 participants than in 60 healthy controls, 
lower in severe participants (n = 16), and increased at SARS-CoV-2 PCR negative follow-up34. These results 
were supported by Reindl-Schwaighofer et al.4. with a larger cohort (n = 159, n = 680 samples) which showed a 
decrease in ACE-S with increasing COVID-19 severity, similar to our results, regardless of ACEi/ARB use. The 
different trajectories of ACE1 activity (and ACE2 activity) between severity groups remains consistent over time, 
as also shown in the above cohort4. Further, these findings were similar to severity-matched influenza patients4, 
suggesting that RAS dysregulation may not be specific to COVID-19, but rather a reflection of endothelial 
damage in the lungs generally, as in other causes of acute respiratory distress syndrome35. This could possibly 
explain a minority of studies that found no differences in ACE1 activity in COVID-19 when compared to other 
respiratory illness controls3,36. Furthermore, ACE1 concentration was not associated with disease severity or 
ACE1 activity in the above study4. This may be the reason why others measuring ACE1 concentration but not 
activity did not find it altered in COVID-1927.

Regarding outcome data, only decreased ACE1 activity but not ACE-S or ACE2 activity were significantly 
associated with mortality, indicating perhaps a greater role for ACE1 dysregulation in COVID-19 pathology 
than ACE2. There is little data on ACE1 activity vs. mortality in the literature, but similar results were obtained 
when ACE-S and ALT-S alone were measured4, in contrast to some studies focusing on ACE2 activity23. The 
unique biology of ACE1 and the RAS in African populations mean that population-specific factors may account 
for these discrepant findings, as well as differences in the comorbidities of COVID-19 cohorts. The immune 
biomarkers identified as increased in deceased participants include proteins involved in a Th17 response (IL-

Fig. 5.  Integrated immune and RAS COVID-19 severity prediction model. A multivariate unbiased variable 
selection model predicting COVID-19 severity, either without (a, c) or with (b, d) ACE1 and ACE2 activities 
and the following laboratory/clinical variables: anti-SARS-CoV-2 antibody titres (against spike & nucleocapsid 
proteins), age, BMI, smoking status, days from hospital admission/testing, presence of hypertension and 
presence of diabetes, with symptom duration included in the models as a confounding variable. The receiver 
operator curves (ROC) (a, b) are shown for discrimination between all possible COVID-19 severity groups 
in the present dataset. The most important proteins contributing to these models are shown in panels (c, d), 
respectively. See Supplementary Table S9 for full description of Olink biomarkers and abbreviations.
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17 C, CCL20) and osteoprotegerin, which is important in osteoimmunology and gut immunosurveillance37. 
Conversely, survival markers include increased chymotrypsin-C and CD244. The latter is expressed in NK 
cells, T cells and MDSCs and has an immunostimulatory or -inhibitory role depending on which secondary 
messengers are activated38.

Fig. 6.  Biomarkers of mortality among severe and critical patients. (a) ACE1 activity is significantly decreased, 
but not ACE-S, (b) nor are ACE2 activity or ALT-S significantly altered in deceased participants vs. survivors, 
in the context of severe/critical disease at the sampling timepoint with worst disease severity. (c) After 
adjusting for multiple comparisons, five immune biomarkers show significant differences among survivors 
and deceased patients. CCL20 C-C motif chemokine 20, CD244 cluster of differentiation 244 (Natural killer 
cell receptor 2B4), CTRC Chymotrypsin-C, IL-17 C interleukin 17 C, OPG osteoprotegerin. The boxplot 
is arranged as follows: central line for each box: median, box limits: 1st and 3rd quartiles, whiskers: 1.5x 
interquartile range, points beyond whiskers: outliers. p-value significance levels (panels (a) and (b)): *: p < 0.05, 
non-significant: not shown.
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There have been several studies on immune signatures in COVID-19 disease, that collectively point to 
early dominance of MDSCs and consequent T and NK cell suppression as important mechanisms of immune 
pathology39,40. The main immune protein discriminators between COVID-19 severity groups in our study 
include PD-L1, HGF, pro-adrenomedullin, CDCP1, Gal-9 and cathepsin L, which is aligned with existing 
literature on COVID-19 immune dysregulation12,41,42, and with an MDSC-signature39,43. PD-L1 is the ligand 
for PD-1, an important checkpoint inhibitor41. PD-L1 is expressed on MDSCs, among other cell types, where it 
downregulates CD8 T cells’ antiviral response, for example39, and is associated with both coronavirus infection 
and disease progression13,41. In contrast, several other biomarkers counteract MDSC-associated cytokines. 
Particularly, HGF is involved in lung repair mechanisms, for example in pneumonia, and inhibits IL-6, IL-
1β, TGF-β and IL-12, and also predicts ICU admission and death in COVID-1912. Pro-adrenomedullin is 
similarly implicated in multiple pathologies (sepsis, pneumonia, cardiac and renal disease), with pleiotropic 
effects, including inhibiting aldosterone and counteracting inflammation-induced endothelial permeability, 
thus contributing to endothelial integrity42,44. A recent meta-analysis showed that pro-adrenomedullin levels 
are significantly decreased in COVID-19 survivors42. Further, CDCP1 is a negative regulator of TGF-β and 
myofibroblasts, and has been associated with a lower risk of hospitalisation and critical COVID-19 severity45. 
In contrast, Gal-9 has a more complex interaction with the MDSC phenotype, since it contributes to activation 
of macrophages and polymorphs46, but also to T cell suppression and apoptosis via its receptor – T-cell 
immunoglobulin- and mucin-domain-containing 3 (TIM-3)43. In a Canadian cohort, Gal-9 was highly elevated 
in severe COVID-19, and tracked with disease and recovery46. Finally, cathepsin L is involved in the SARS-
CoV-2 endosomal entry pathway downstream of ACE2, which is an alternative to the transmembrane protease, 
serine 2 (TMPRSS2)-mediated cell surface entry pathway21,47.

Three other biomarkers identified had the ability to discriminate between critical and mild disease. These 
include another important MDSC protein, EN-RAGE, also known as S100A12, OSM (a member of the IL-6 
family), and TNFSF14, which is known to contribute to lung remodelling and fibrosis. All are associated with 
COVID-19 severity in other studies, in particular EN-RAGE is increased in both lung and serum samples from 
patients with severe COVID-1939,40. EN-RAGE is a damage-associated molecular pattern (DAMP) secreted by 
activated monocyte-macrophages and neutrophils, which induces an inflammatory response by binding RAGE 
in multiple inflammatory conditions, including ARDS48,49. It is also implicated in MDSC pathways, and has 
recently strongly been linked by several studies to MDSC activation in severe COVID-1939,40,50. Similarly, OSM 
is also increased in severe COVID-19 in both lung and plasma, but not peripheral blood mononuclear cells or 
the spleen40,51. OSM is a pleiotropic cytokine implicated in several other inflammatory diseases, including severe 
sepsis and lung fibrosis, through its roles of inducing IL-6 production, MCP-1 expression and accumulation 
of pro-fibrotic macrophages, for example51–53. Finally, other pathways highlighted in the multivariate severity 
model relate to a pro-inflammatory response, such as IL-12 which favours the differentiation of Th1 T cells, as 
well as activation of NK cells54,55. Synergistically with other cytokines, IL-12 stimulates release of IFN- γ via 
STAT4 signalling from these cells in response to viral infection54–56. IFN- γ causes the further secretion of IL-12 
from macrophages and dendritic cells, which leads to a sustained Th1 antiviral response55,56. However, numerous 
studies have shown evidence of a defective Th1 T cell response in COVID-19, with reduced T cell activation, 
numbers and IFN- γ  levels, with increased exhaustion markers13,39,57. NK cells likewise form an important part 
of antiviral defence, but have been shown to display lower cytotoxic and higher exhaustion markers in severe 
COVID-19, which is consistent with our finding of IL-12B (also known as IL-12p40) being significantly lower 
in hospitalised participants57. IL-12 itself has been associated with COVID-19 disease severity progression, in 
some54 but not all46 studies. These findings show clear evidence of immune dysregulation worsening severity.

In the combined analyses, both ACE1 and ACE2 activities remained important discriminatory factors in 
disease severity, with ACE1 activity in the top 15 biomarkers out of approximately 100 immunoproteome and 
clinical variables. Few other studies have directly compared RAS dysregulation to the coronavirus immune 
response. One study employed an extensive Olink panel, which included relative ACE2 amount (along with 
renin and renin receptor levels) and found that plasma ACE2 amounts were associated with day-28 outcomes, 
as well as cardiac and renal injury in intubated patients, following the late peak pattern of other endothelial 
injury markers58. However, no further comparative analysis or modelling was done between RAS and immune 
dysregulation biomarkers, and neither was a thorough profiling of the RAS, or even the classical arm of the 
RAS (e.g. ACE1), included. While several other studies compared the association between a limited number 
of cytokines (such as IL-6 and TNF- α ) and either/both arms of the RAS23,27, there is a paucity of substantive 
integrative analyses of both systems in the context of COVID-19. Therefore, the novel integrated data approach 
that was employed in the present study contributes towards the understanding of the meaningful role of the RAS 
in coronavirus pathology, even within the context of established immune dysregulation.

Lesser-known immune functions of ACE1 include effects on myeloid cells and antigen presentation, along 
with integrated crosstalk between RAS and MDSC signatures, with both agonistic and antagonistic effects14. For 
instance, AngII/AT1R signalling can lead to the release of IL-1β, IL-6, IL-8 and VEGF, which can all upregulate 
MDSC pathways15. However, ACE1 activity itself, through an Ang II-independent mechanism, can antagonise 
MDSC development in murine models14,15. Thus, ACE1 decrease with severe COVID-19 could either drive 
disease severity or be a counter-regulatory mechanism to limit MDSC-driven pathology; these effects may differ 
depending on the stage of viral infection. Further in vitro or animal model work is warranted to understand the 
implications of RAS dysregulation on current and future coronavirus disease pathology.

Our study has a few important limitations. Sampling could only be performed on or after admission/
testing, thus no pre-COVID-19 samples were available for individualised baseline comparison, and the time 
from symptom onset could not be standardised. A further implication of this enrolment point is that the 
pathophysiology of disease very early on in the illness course could not be fully assessed. Nevertheless, this is 
generally the case in hospital-based research settings, as well as clinical care. We have tried to mitigate this effect 
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by including symptom duration as a confounder in the combined RAS-immunoproteome models, as well as 
demonstrating the utility of RAS biomarkers for differentiating disease trajectory over time. Another limitation 
is that recruitment occurred across three COVID-19 waves (differing viral variants). However, the consistency 
of the results across variants and that ACE2 remains the conserved entry receptor strengthens the case for 
continued relevance of the findings. Further, some subgroup sample sizes were small, particularly for ACEi/ARB 
treated hypertensive patients, meaning that findings are limited in these potentially relevant groups. Recruitment 
occurred pre-vaccine roll-out, thus this data’s similarity to the vaccinated population with recurrent COVID-19 
is uncertain. Moreover, the nature of our data means that only the association and not causal relationship nor 
the timeline between dysregulated RAS and COVID-19 severity can be delineated. Further work is required 
to better define these relationships and the mechanistic significance of these findings for current and future 
coronavirus diseases.

In conclusion, this novel integrative study has revealed promising roles for ACE2 activity as a biomarker of 
COVID-19 disease severity and highlighted the importance of ACE1 within the MDSC conceptual framework 
of coronavirus pathophysiology. Both the RAS and MDSCs are involved in a wide range of key global health 
concerns, including viral infections, sepsis, cardiac disease, lung fibrosis, autoimmune disease and cancer, 
highlighting the need for further research into both mechanistic interactions of these systems, as well as their 
therapeutic manipulation, including that of the alternative ACE2/Ang1-7 axis. The latter may be particularly 
important in conditions with a relative hypo-activation of the classical RAS, such as in coronavirus pathology.

Methods
Participant recruitment, sampling and ethics statement
Adult patients with COVID-19 (either SARS-CoV-2 PCR (n = 135) or antigen (n = 2) positive, or as clinically 
determined (n = 6)) were recruited as soon as possible after admission or testing to the University of Cape 
Town (UCT) Faculty of Health Sciences (FHS) COVID-19 biorepository (HREC: R021/2020), under which 
sampling occurred. Patients were either admitted to Groote Schuur Hospital (GSH) or, in cases of milder disease, 
recruited from the GSH COVID-19 testing centre or a nearby research testing centre working in collaboration 
with GSH. Patients in this ACE2 sub-study were > 18 years old, not pregnant and < 14 days from admission (or 
PCR testing if not admitted) at enrolment – the vast majority were also < 14 days from symptom onset; patients 
with known chronic kidney disease were excluded. Admissions occurred prior to COVID-19 vaccine availability 
in South Africa (SA) between June 2020 and July 2021, including patients across the first three waves of 
COVID-19 infections in SA (dominant variants: Wildtype (D614G), Beta and Delta)17. Data collected included 
demographic, clinical, and laboratory data together with blood sampling at baseline and at a median of three 
further sampling timepoints throughout the course of disease. The timepoint of worst clinical severity was used 
for further analysis, except where otherwise stated. Details of GSH and the drainage population are provided 
in the Supplementary Methods. A group of asymptomatic, non-hospitalised COVID-19 participants (n = 29) 
from the same population were also included from the BCG Trial, full details of which are published16. These 
patients seroconverted during the course of the above study, becoming positive for SARS-CoV-2 nucleocapsid 
IgG antibodies and were thus selected for inclusion provided serum samples were still available. A recovery 
follow-up visit with sampling was attempted wherever possible for all surviving participants at least three and 
up to eighteen months post-discharge (n = 98 (57%)), and at minimum mortality outcomes were followed up 
and recorded for all participants at this time. These studies (the biorepository; this ACE2 study; BCG trial) were 
approved by the UCT FHS Human Research Ethics Committee (HREC R021/2020; 257/2020; 237/2020), and 
all participants provided a written informed consent. All samples were anonymised and labelled with random 
study identifiers, and collected data was de-identified for analyses, with a separate password protected database 
linking patient information and study identifiers. This work was conducted in line with the principles of the 
Declaration of Helsinki.

Illness severity was scored based firstly on the WHO’s COVID-19 disease severity classification18, with the 
only modification being to evaluate the ratio of arterial partial pressure of oxygen to fraction of inspired oxygen 
(PaO2/FiO2) according to the National Institutes of Health (NIH)59 and US Food and Drug Administration 
(FDA)60 guidelines. Since it proved important to distinguish between ambulatory and hospitalised participants 
in analyses, SARS-CoV-2 infection severity was stratified into four groups according to the National Institute 
of Allergy and Infectious Diseases (NIAID) ordinal scale:61 Asymptomatic nucleocapsid-serology-positive 
COVID-19 infected; NIAID 1–2 (ambulatory, WHO mild-moderate disease); NIAID 3–5 (hospitalised, 
WHO moderate-severe disease, including PaO2/FiO2 ≤ 300 and >100); NIAID 6–7 (hospitalised with WHO 
critical disease or PaO2/FiO2 ≤ 100). The detailed methodology for severity classification is available in the 
Supplementary Methods (See also Supplementary Tables S2 and S3).

Routine and specialised laboratory data and methods
Participants enrolled in the context of the UCT FHS COVID-19 biorepository did not have protocol specified 
blood sampling or laboratory testing; however standard-of-care at GSH for COVID-19 in-patients19 meant 
that basic blood parameters available for hospitalised patients in this cohort include baseline full blood 
counts, electrolytes and renal function, d-dimer and occasionally CRP. Serum samples were collected for each 
timepoint (see Supplementary Methods) and used for the Olink Target 96 Inflammatory and Cardiovascular 
II proteomic panels (Supplementary Fig. S16 shows the correlation between panels). The RAS was profiled in 
serum using both RAS Fingerprinting® (Attoquant Diagnostics) via liquid chromatography with tandem mass 
spectrometry (LC-MS/MS)62, and via measurement of ACE1 and ACE2 enzyme activities using fluorometric 
assays. Nasal mucosal scrapes were collected at all timepoints for participants from the Beta COVID-19 wave 
onwards. Anti-nucleocapsid and anti-spike IgG titres were measured using a cell-based assay and enzyme-linked 
immunosorbent assay (ELISA), respectively, as previously published63. All laboratory work received approval 
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from the UCT Institutional Biosafety Committee prior to conducting work. See Supplementary Methods for the 
full detailed laboratory methods.

Statistical analysis
Clinical and routine laboratory data were entered and stored on the secure Research Electronic Data Capture 
repository (REDCap, version 12.0.19, Vanderbilt University, Nashville, Tenn.). Data was then de-identified and 
extracted into comma-separated value files for analysis. Openware R (versions 4.0.2, 4.2.3 and 4.3.1) was used for 
statistical analyses and data visualisation in this study. Continuous data were summarised as medians and IQR if 
not normally distributed, otherwise as mean and standard deviation. Statistical differences were tested between 
groups using Wilcoxon rank test (non-parametric data) or t-test of mean difference (parametric data) and 
across groups using Kruskal-Wallis test or one-way ANOVA. Categorical data are summarised as frequencies 
and proportions and statistical differences tested using N-1 (E.Pearson) Chi-squared test or Fisher-exact test. A 
p-value of < 0.05 was considered statistically significant.

Transcriptomic data
The nf-rnaSeqCount Nextflow workflow (https://github.com/phelelani/nf-rnaSeqCount) was used to process the 
raw RNA-seq reads for differential expression analyses. Briefly, the quality of the raw RNA-seq FASTQ files was 
assessed using FASTQC and MultiQC packages. The RNA-seq reads were then aligned to the human GRCh38 
reference genome using STAR to identify genomic features, and HTSeqCounts used to quantify the abundance 
of the identified features. The resulting raw read count matrix was used for the differential expression analysis in 
R (v4.4.0) using the DEseq2 package. Raw read counts were normalised using DEseq2 and log2 transformed. We 
compared ACE1 and ACE2 enzyme activity with log2 normalised counts across the different COVID-19 disease 
severity. We also compared the correlation between the enzyme activity and log2 normalised counts for ACE and 
ACE2 using Spearman’s correlation.

Olink proteomic data
Patients’ serum proteomics were quantified using the O-link proximity extension assay and presented as log2 
normalized protein expression (NPX) scores. A total of 96 proteins from the Inflammation and Cardiovascular 
II panels were utilised, while those whose NPX values were either missing or below the limit of detection (LOD) 
in > 50% of the samples were excluded from further analysis (Supplementary Table S11). The remaining protein 
analytes whose NPX values were below LOD were either replaced with √LOD or imputed using maximum-
likelihood estimates form the nrom2 R package. There were 7 proteins quantified in both of the two panels, 
which were highly correlated (Supplementary Fig. S16), and thus the analytes of the panels were merged. The 
average NPX values for the 8 samples used for Olink batch correction was used. PCA of the NPX scores for each 
sample was performed using the prcomp R function for dimensional reduction and visualized using the ggplot2 
R package. PERMANOVA, using Euclidean distances, available in the vegan R package was used to determine 
the differences in the samples based on COVID-19 severity with the model adjusted for patient symptom length 
and sample random effects. Quantile scaled values of NPX scores, RAS data and antibody titres for each study 
participant was visualised using a heatmap with unsupervised hierarchical clustering from the ComplexHeatmap 
R package. K-mean clustering was applied for unsupervised grouping of samples based on protein NPX scores, 
while random forest classification, using the randomForest R package, was used to determine key variables 
driving the clustering. Pairwise comparisons were performed using Wilcoxon rank test and computed p-values 
were corrected for multiple comparisons using false discovery rates (FDR). Adjusted p-values of < 0.05 were 
considered statistically significant. Supplementary Table S12 contains a list of programming packages used.

Data availability
De-identified data will be made available upon reasonable request to the corresponding author.
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