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Abstract 

SARS-CoV-2 infection has been associated with increased autoimmune disease risk. 

Past studies have not aligned regarding the most prevalent autoimmune diseases 
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after infection, however. Furthermore, the relationship between infection severity and 

new autoimmune disease risk has not been well examined. We used RECOVER’s 

electronic health record (EHR) networks, N3C, PCORnet, and PEDSnet, to estimate 

types and frequency of autoimmune diseases arising after SARS-CoV-2 infection 

and assessed how infection severity related to autoimmune disease risk. We identi-

fied patients of any age with SARS-CoV-2 infection between April 1, 2020 and April 

1, 2021, and assigned them to a World Health Organization COVID-19 severity 

category for adults or the PEDSnet acute COVID-19 illness severity classification 

system for children (<age 21). We collected baseline covariates from the EHR in the 

year pre-index infection date and followed patients for 2 years for new autoimmune 

disease, defined as ≥ 2 new ICD-9, ICD-10, or SNOMED codes in the same concept 

set, starting >30 days after SARS-CoV-2 infection index date and occurring ≥1 day 

apart. We calculated overall and infection severity-stratified incidence ratesper 1000 

person-years for all autoimmune diseases. With least severe COVID-19 severity as 

reference, survival analyses examined incident autoimmune disease risk. The most 

common new-onset autoimmune diseases in all networks were thyroid disease, pso-

riasis/psoriatic arthritis, and inflammatory bowel disease. Among adults, inflamma-

tory arthritis was the most common, and Sjögren’s disease also had high incidence. 

Incident type 1 diabetes and hematological autoimmune diseases were specifically 

found in children. Across networks, after adjustment, patients with highest COVID-

19 severity had highest risk for new autoimmune disease vs. those with least severe 

disease (N3C: adjusted Hazard Ratio, (aHR) 1.47 (95%CI 1.33–1.66); PCORnet aHR 

1.14 (95%CI 1.02–1.26); PEDSnet: aHR 3.14 (95%CI 2.42–4.07)]. Overall, severe 

acute COVID-19 was most strongly associated with autoimmune disease risk in three 

EHR networks.

Introduction

The COVID-19 pandemic resulted in significant acute morbidity and mortality from 
the SARS-CoV-2 virus and has ongoing post-viral consequences. Affecting over 777 
million persons as of May 2024, COVID-19 caused over 7 million deaths as assessed 
by the World Health Organization (WHO) [1]. Among other long-term sequelae of 
COVID-19, the emergence of clinical autoimmune disease has been reported in 
many case series and an increasing number of epidemiological studies [2–17].

Collectively, autoimmune diseases affect millions of Americans and are a leading 
cause of morbidity and mortality [18,19]. Over 100 different autoimmune diseases 
exist, including type I diabetes, juvenile inflammatory arthritis and inflammatory bowel 
disease, which predominate among younger people, and rheumatoid arthritis (RA), 
autoimmune thyroid disease, polymyalgia rheumatica, Sjögren’s disease, and varied 
forms of systemic vasculitis, more common in older people. Most of these related 
conditions are associated with autoantibody production, targeted or widespread sys-
temic inflammation, and organ damage. They are known to be increasingly prevalent 
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with age and associated with significant morbidity, decreased life expectancy and 
high medical expenditures [19]. Autoimmune disease pathogenesis is now under-
stood to be due to complex interactions among genetic factors, environmental expo-
sures throughout the lifespan, immune responses to these factors, and interactions 
between all of these. The environmental triggers of the immune attack on self-tissues 
characterizing autoimmune diseases are not yet fully elucidated [20]. Autoimmunity 
arising after viral infections has been widely reported, although it remains challeng-
ing to study, with no single viral infection universally accepted as a risk factor for the 
development of most autoimmune diseases [21].

Recent studies have used administrative databases from the United States (U.S.), 
Hong Kong, the United Kingdom (U.K.), Germany, and Korea to study the associa-
tion between SARS-CoV-2 infection and subsequent incident autoimmune diseases 
in both adults and children [4,15–17,22]. Most of these studies have assessed the 
risk of developing new autoimmune or autoinflammatory disease among those who 
tested positive for SARS-CoV-2, compared to the risk among those who tested neg-
ative. Using matched cohort designs, risks of a wide range of autoimmune diseases, 
with variation across studies, have been found to be elevated after SARS-CoV-2 
infection compared to those without prior infection [4,15–17,22,23]. A secondary 
analysis in a study from Hong Kong found that those with more severe hospitalized 
COVID-19 had increased risk of both transverse myelitis and inflammatory bowel dis-
ease, which was not observed when all SARS-CoV-2-infected patients were studied, 
and that vaccination against SARS-CoV-2 attenuated the overall risk of autoimmune 
disease after COVID-19 [15]. A recent study using the TriNetX insurance database 
did not find an influence of vaccination against SARS-CoV-2 on risk of autoimmune 
disease; however, it reported that those who developed autoimmune disease (vs. 
those who did not) had an approximately 50% higher risk of having been previously 
hospitalized with COVID-19 [23].

Given these recent reports and the strong biologic possibility that more severe 
SARS- CoV-2 infection, with higher circulating concentrations of inflammatory cyto-
kines (e.g., interleukin-6) and cytokine storm syndromes in some, may be more 
strongly linked to triggering of new autoimmune disease, we aimed to investigate the 
association between SARS-CoV-2 infection and incident autoimmune diseases [24]. 
Here, we have investigated COVID-19 severity and the risk of subsequently devel-
oping autoimmune disease among adults and children living across the U.S. within 
the Researching COVID-19 to Enhance Recovery (RECOVER) electronic health 
record (EHR) networks. RECOVER is an NIH-funded national consortium studying 
the COVID-19 pandemic’s association with long-term health effects. The goal of 
RECOVER is to improve understanding of and ability to predict, treat, and prevent 
PASC (post-acute sequelae of SARS-CoV-2, also known as Long COVID). The EHR 
cohort of RECOVER is comprised of aggregated data from three separate EHR 
networks, including the National COVID-19 Cohort Collaborative (N3C), the National 
Patient-Centered Clinical Research Network (PCORnet) and PCORnet’s pediatric 
population, PEDSnet, a pediatric learning system within PCORnet [25–29]. These 
networks were either established prior to (PCORnet and PEDSnet) or in response to 
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COVID-19 (N3C). We estimated the type and frequency of incident autoimmune diseases following SARS-CoV-2 infection 
by severity in the RECOVER EHR cohort, which contains medical data on over 35 million individuals living across the U.S. 
from April 1, 2019 to March 31, 2023 [23,30].

Methods

Data sources

Data from the three RECOVER EHR networks were assembled from over 100 sites across the US. Data included demo-
graphics, encounters, medical diagnoses, medications, and selected laboratory results were available. Diagnoses were 
classified using both the International Classification of Disease (ICD)- 9th and 10th editions codes and the Systematized 
Nomenclature of Medicine Clinical Terms (SNOMED CT) codes. De-identified EHR data relating to patient encounters 
from April 1, 2019 to March 31, 2023 were acquired from N3C version 187 from December 2024, PCORnet version S12 
from October 2024, and PEDSnet version S9 from July 2023. N3C RECOVER patient selection criteria can be found on 
the N3C phenotype inclusion criteria website (https://github.com/National-COVID-Cohort-Collaborative/Phenotype_Data_
Acquisition/wiki/Latest-Phenotype). The N3C data transfer to NCATS is performed under a Johns Hopkins University 
Reliance Protocol # IRB00249128 or individual site agreements with NIH. The N3C Data Enclave is managed under the 
authority of the NIH; information can be found at https://ncats.nih.gov/n3c/resources. The original selection of patients 
into PCORnet and PEDSnet RECOVER EHR networks are described in S1 Appendix. For PCORnet/PEDSnet, Institute 
Review Board (IRB) approval was obtained under Biomedical Research Alliance of New York (BRANY) protocol #21-08-
508. As part of the Biomedical Research Alliance of New York (BRANY IRB) process, the protocol has been reviewed in 
accordance with the institutional guidelines. The Biomedical Research Alliance of New York (BRANY) waived the need for 
consent and HIPAA authorization. Institutional Review Board oversight was provided by the Biomedical Research Alliance 
of New York, protocol # 21-08-508-380.

COVID-19 definition and covariates

Patients with evidence of SARS-CoV-2 infection in all three EHR networks were defined and identified for the current 
study as having a positive SARS-CoV-2 PCR or antigen test, a U07.1 ICD-10 code, a prescription for nirmatrelvir/
ritonavir or a medication order for remdesivir between April 1, 2020, and April 1, 2021. A patient’s index date was 
defined as the first indication of SARS-CoV-2 positivity in that time-period. Patients aged 21 and over at their index 
event were included within N3C and PCORnet analyses, whereas those younger than 21 were included in PEDSnet. 
Patients were excluded from the study if they had unknown or missing sex. To ensure patients received their health-
care at an in-network site, we required at least one encounter within the 365 days prior to the SARS-CoV-2 infection 
index date.

The baseline period for collecting study subject characteristics was the year before, up to and including, the SARS-
CoV-2 infection index date. Sociodemographic characteristics included: age, sex, race/ethnicity, and medical insur-
ance type. Baseline clinical and behavioral characteristics included: prior history of autoimmune disease, defined as ≥ 
1 ICD-9/ICD-10 or SNOMED code for any one autoimmune disease prior to SARS-CoV-2 infection index date (S2–S4 
Appendices), healthcare utilization (number of EHR medical encounters) in the 365 days prior to, but not including, 
the 5 days before index event, the index event time-period (in 3-month intervals), baseline comorbidity scores (by the 
Charleston Comorbidity Index (CCI) for adults and the Pediatric Medical Complexity Algorithm (PMCAv3.0) for children), 
 ever-smoking status among adults, substance use disorder (S5 Appendix), body mass index (BMI, in kg/m2) categorized 
according to the World Health Organization (WHO) standards, glucocorticoid use (current vs. non-current oral or intra-
venous use) (S6 Appendix), and the size of participating RECOVER sites (by pre-inclusion and exclusion criteria patient 
enrollment numbers in quartiles) [31–34]. Autoimmune rheumatic diseases were excluded from the CCI and the immuno-
logical system was excluded from the PMCA.

https://github.com/National-COVID-Cohort-Collaborative/Phenotype_Data_Acquisition/wiki/Latest-Phenotype
https://github.com/National-COVID-Cohort-Collaborative/Phenotype_Data_Acquisition/wiki/Latest-Phenotype
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COVID-19 severity

For adult patients, we categorized COVID-19 illness severity using encounter location and medical interventions accord-
ing to the WHO ordinal scale score [35]. Based on encounters within three days before to 16 days after the index event 
[36], four-level mutually exclusive categories were defined: a) “outpatient with mild conditions” (WHO severity 1–2), if 
there was no evidence for hospitalization or emergency department encounter; b) “Outpatients with mild conditions with 
emergency department visit” (WHO severity, approximately 3) if there was an emergency department encounter only; c) 
“Hospitalized” (WHO severity 4–6) if hospitalized but not critically ill and d) “Hospitalized with ventilation” (WHO severity 
7–9) if hospitalized and requiring ICU level care, invasive ventilation, extracorporeal membrane oxygenation (ECMO), or 
vasopressor/inotropic support. Descriptors here correspond to the labels found in tables and all analyses, i.e., “Outpa-
tient”, “Emergency Department”, “Hospitalized”, and “Hospitalized and on Ventilator”. Codes used to identify hospitalized 
and on ventilator can be found in S7-S8 Appendices.

For pediatric patients, mutually exclusive categories were constructed using PEDSnet’s four-level acute COVID-19 
severity illness classification. Patients were categorized as asymptomatic, mild, moderate, or severe based on patient 
COVID-19 symptom clusters identified by using clinically cogent sets of SNOMED CT diagnosis codes examined 7 days 
before to 13 days after the day of SARS-CoV-2 infection positivity [30]. Asymptomatic patients met no criterion for severity. 
For more information on the PEDSnet mild – severe severity concepts, see S1 Table.

Incident autoimmune disease

Patients were followed through their EHRs for up to 24 months after index date with incident autoimmune disease (pri-
mary outcome) defined as having ≥ 2 codes within any one new autoimmune disease concept set (condition) starting 
30-days or more after index date and occurring ≥ 1 day apart. Autoimmune diseases were identified by ICD-9/ICD-10/
SNOMED codes within the same autoimmune disease concept set for 41 distinct autoimmune diseases and one “other” 
category (S2-S4 Appendices). The minimum 30-day window period after the index date was designed to avoid the capture 
of prevalent autoimmune diseases and misdiagnoses close to the acute SARS-CoV-2 infection and to compensate for 
any increased autoimmune disease surveillance bias soon after acute infection. SARS-CoV-2 infection would be unlikely 
to cause autoimmune disease development within the first month after exposure as most autoimmune diseases develop 
slowly, with symptoms taking many months to emerge [20]. For individuals with a history of prior autoimmune disease 
(at least 1 ICD-9/ICD-10 or SNOMED code for any one autoimmune disease prior to SARS-CoV-2 infection index date), 
incident autoimmune disease in follow-up was included as an outcome only if the diagnosis codes were not within the 
patient’s prior autoimmune disease concept set.

Statistical analyses

The baseline demographics of the patients in each EHR network were examined with descriptive statistics, overall and 
according to their COVID-19 illness severity. Unadjusted incidence rates per 1000-person years were calculated overall 
and by COVID-19 illness severity category for each autoimmune disease concept set. The five most common new auto-
immune diseases per 1000 person-years in each EHR network were identified. The association of COVID-19 severity and 
risk of new autoimmune disease was first assessed using unadjusted Kaplan-Meier curves, censoring for death. We also 
created unadjusted cumulative incidence curves accounting for the competing risk of death and new autoimmune disease.

We then conducted multivariable-adjusted Cox regression models. In all analyses, the least severe COVID-19 
severity category was the reference group. Adjusted hazard ratios (aHR) with 95% confidence intervals (CIs) and cor-
responding p values were estimated for two primary Cox regression models, censoring for death, end of follow-up, and 
the outcome of new autoimmune disease. The first model adjusted for age, sex, race, and ethnicity, and the second, 
fully adjusted model, further adjusted for medical insurance type (as a proxy for socioeconomic status), healthcare 
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utilization, date of SARS-CoV-2 infection, comorbidities, the CCI for adults and PMCA for children, as well as substance 
use disorder, smoking status (adults only), BMI (according to WHO categories for adults and according to age-based 
percentiles in children), glucocorticoid use, and RECOVER enrollment site size. We selected our covariates for our 
adjusted models based on univariable analyses to assess whether they were true confounders (associated with the risk 
of the predictor and with the risk of the outcome) and also included other variables for face validity (size of the enroll-
ment center, medical insurance, time period of SARS-CoV-2 infection). We tested the proportional hazards assumption 
by examining the Kaplan-Meier curves and assessing interaction of the predictors with time. Missing data were repre-
sented in a missing category. Secondary analyses stratified the fully adjusted models by sex to investigate potential 
effect modification [37]. In another secondary analysis, we excluded those with a history of any prior autoimmune 
disease from both the fully adjusted and sex stratified models. Data analyses were performed using R version 4.3.1. R 
survival and ggsurvfit packages (2023.08.28) [38,39].

Fig 1. Flowchart for the selection of COVID-19 patients, COVID-19 severity level assignment, and outcomes.

https://doi.org/10.1371/journal.pone.0324513.g001

https://doi.org/10.1371/journal.pone.0324513.g001
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Table 1. Patient characteristics in N3C at time of SARS-CoV-2 infection by illness severity, April 2020 – April 2021.

Characteristic All Patients Outpatient Emergency  
Department

Hospitalized Hospitalized  
and on Ventilator

N 1,267,802 980,716 144,837 121,732 20,517

History of prior autoimmune disease1 6% 5% 6% 10% 12%

Mean age (± SD) 50 (18) 48 (17) 49 (17) 63 (18) 61 (17)

Female sex 58% 59% 61% 52% 47%

Race/ethnicity2

 Non-Hispanic Asian 2% 2% 2% 2% 3%

 Non-Hispanic Black 13% 10% 21% 20% 21%

 Non-Hispanic White 65% 68% 55% 58% 53%

 Non-Hispanic Other/Multiple 3% 3% 2% 3% 2%

 Hispanic or Latino 12% 12% 16% 14% 16%

 Missing/Unknown 5% 6% 4% 4% 5%

Charlson comorbidity index3

 0 67% 73% 60% 31% 20%

 1-3 24% 21% 32% 38% 35%

 4+ 9% 5% 9% 31% 44%

Ever smoker 6% 5% 9% 10% 14%

Prior substance abuse 6% 4% 11% 13% 17%

Body mass index4

 Underweight 1% 1% 1% 2% 2%

 Normal weight 12% 12% 12% 15% 16%

 Overweight 17% 16% 19% 20% 23%

 Moderately obese 13% 12% 16% 16% 19%

 Severely obese 7% 7% 10% 10% 11%

 Morbidly obese 7% 6% 10% 10% 13%

 Missing/Unknown 43% 47% 34% 27% 15%

Prior glucocorticoid use5 12% 10% 15% 20% 24%

Medical insurance

 Private 10% 10% 10% 10% 11%

 Medicare/Medicaid 5% 3% 9% 14% 17%

 Other <1% <1% 1% 1% 1%

 Missing/Unknown 84% 86% 80% 75% 72%

Mean prior encounters
(± SD)6

19 (34) 17 (30) 22 (36) 32 (51) 36 (57)

Index date period

 Apr – June 2020 10% 9% 11% 17% 20%

 Jul – Sep 2020 14% 14% 14% 14% 16%

 Oct – Dec 2020 50% 51% 48% 42% 37%

 Jan – Apr 2021 26% 26% 27% 27% 27%

RECOVER site size7

 1st quartile 5% 4% 6% 9% 10%

 2nd quartile 10% 9% 10% 12% 18%

 3rd quartile 21% 21% 16% 20% 25%

 4th quartile 65% 66% 68% 59% 47%

Abbreviation: SD, standard deviation.

(1) History of prior autoimmune disease definition: Patients with at least 1 autoimmune disease ICD-9/ICD-10/SNOMED code within any of the autoim-
mune disease concept set at any point prior to their index date.

(Continued)
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(2) Race/ethnicity is commonly inconsistent and/or inaccurately captured in the EHR, especially among minorities, and can lead to significant missing 
data and misclassification biases [31,32]. Hispanic ethnicity was defined as its own category and not cross-reported with the other race categories for 
ease of standardization and comparison across a large network of health systems.

(3) Charlson Comorbidity Index is a weighted index classification system using a collection of EHR diagnoses codes from all available data prior to the 
patient’s SARS-CoV-2 infection index to define a patient’s risk of mortality [25].

(4) Body Mass Index (BMI in kg/m2) is categorized according to the World Health Organization (WHO) and National Institute of Health (NIH) standards. 
Categorization BMI cut-offs are as follows: Underweight: < 18.5 kg/m2, normal: 18.5 to 24.9 kg/m2, overweight: 25 to 29.9 kg/m2, moderately obese: 
30–34.9 kg/m2, severely obese: 35–39.9 kg/m2, morbidly obese: ≥ 40 [27]. The most recent recorded BMI, either on or up to 1- year prior SARS-CoV-2 
infection index event, was used.

(5) Prior glucocorticoid use was defined by having at least 1 prescription for oral or intravenous dexamethasone, betamethasone, prednisolone, methyl-
prednisolone, triamcinolone, hydrocortisone, prednisone, or triamcinolone within 1 year to 1 week prior to SARS-CoV-2 infection index event.  
See S6 Appendix.

(6) Prior encounters were defined as the count of unique days with at least one billing encounter in the 365 days prior to, but not including, the 5 days 
preceding a patient's SARS-CoV-2 infection. Outpatient and ED visits were assumed to last 1 day.

(7) RECOVER site quartiles are based on overall RECOVER patient enrollment numbers. Sites are categorized by the following; quartile 1: < 140,000 
participants, quartile 2: < 220,000 participants, quartile 3: < 400,000 participants, quartile 4: ≥ 400,000 participants.

https://doi.org/10.1371/journal.pone.0324513.t001

Table 1. (Continued)

Table 2. Patient characteristics in PCORnet at time of SARS-CoV-2 infection by illness severity, April 2020 – April 2021.

Characteristic All Patients Outpatient Emergency 
Department

Hospitalized Hospitalized  
and on Ventilator

N 601,635 426,943 79,201 63,600 31,981

History of prior autoimmune disease1 8% 8% 7% 11% 10%

Mean age (± SD) 50 (18) 48 (17) 48 (17) 61 (18) 63 (17)

Female sex 55% 56% 56% 50% 45%

Race/ethnicity2

 Non-Hispanic Asian 3% 3% 2% 4% 4%

 Non-Hispanic Black 15% 13% 23% 23% 16%

 Non-Hispanic White 46% 49% 38% 42% 34%

 Non-Hispanic Other/Multiple 5% 6% 5% 6% 4%

 Hispanic or Latino 15% 13% 20% 21% 13%

 Missing/Unknown 16% 18% 12% 5% 29%

Charlson comorbidity index3

 0 60% 68% 61% 2745% 26%

 1-3 27% 24% 30% 39% 38%

 4+ 12% 8% 9% 34% 36%

Ever smoker 22% 20% 27% 35% 20%

Prior substance abuse 6% 4% 10% 14% 11%

Body mass index4

 Underweight 1% 1% 1% 1% 1%

 Normal weight 11% 11% 8% 10% 9%

 Overweight 15% 16% 13% 16% 14%

 Moderately obese 12% 12% 11% 13% 11%

 Severely obese 7% 6% 7% 8% 6%

 Morbidly obese 6% 5% 7% 8% 6%

 Missing/Unknown 49% 49% 53% 45% 52%

Prior glucocorticoid use5 10% 9% 8% 12% 12%

Medical insurance

(Continued)

https://doi.org/10.1371/journal.pone.0324513.t001
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Results

Study populations

Fig 1 shows the flow diagram of the cohort construction and overall outcomes of the analysis.
Patient characteristics by COVID-19 severity status for each EHR network are shown in Tables 1–3. The following 

number of patients with SARS-CoV-2 infection were identified between April 1, 2020, and April 1, 2021: 1,267,802 adults 
within N3C, 601,635 adults within PCORnet, and 162,020 pediatric patients in PEDSnet. For both N3C and PCORnet, 
mean patient age was 50 (standard deviation, SD, 18) and increased as COVID-19 severity increased, with those in the 
highest severity level being 61-63 (SD 17) years old. For PEDSnet, the overall mean age was 12 (SD 7) and more consis-
tent across the severity categories.

Characteristic All Patients Outpatient Emergency 
Department

Hospitalized Hospitalized  
and on Ventilator

 Private 25% 29% 21% 15% 8%

 Medicare/Medicaid 13% 11% 17% 23% 20%

 Other 2% 2% 1% 2% 1%

 Missing/Unknown 60% 59% 61% 60% 71%

Mean prior encounters
 (± SD)6

12 (19) 11 (16) 11 (17) 19(28) 21 (29)

Index date period

 Apr – June 2020 19% 19% 16% 22% 32%

 Jul – Sep 2020 19% 21% 16% 15% 12%

 Oct – Dec 2020 35% 36% 35% 34% 25%

 Jan – Apr 2021 26% 25% 33% 29% 30%

RECOVER site size7

 1st quartile 1% 1% 2% 1% 1%

 2nd quartile 9% 7% 15% 14% 3%

 3rd quartile 15% 17% 11% 9% 19%

 4th quartile 75% 76% 72% 76% 77%

Abbreviation: SD, standard deviation.

(1) History of prior autoimmune disease definition: Patients with at least 1 autoimmune disease ICD-9/ICD-10/SNOMED code within any of the autoim-
mune disease concept set at any point prior to their index date.

(2) Race/ethnicity is commonly inconsistent and/or inaccurately captured in the EHR, especially among minorities, and can lead to significant missing 
data and misclassification biases [31,32]. Hispanic ethnicity was defined as its own category and not cross-reported with the other race categories for 
ease of standardization and comparison across a large network of health systems.

(3) Charlson Comorbidity Index, CCI, is a weighted index classification system using a collection of EHR diagnoses codes from all available data prior to 
the patient’s SARS-CoV-2 infection index to define a patient’s risk of mortality [25].

(4) Body Mass Index (BMI, in kg/m2) is categorized according to the World Health Organization (WHO) and National Institute of Health (NIH) standards. 
Categorization BMI cut offs are as follows: Underweight: < 18.5 kg/m2, normal: 18.5 to 24.9 kg/m2, overweight: 25 to 29.9 kg/m2, moderately obese: 
30–34.9 kg/m2, severely obese: 35–39.9 kg/m2, morbidly obese: ≥ 40 [27]. The most recent recorded BMI, either on or up to 1- year prior SARS-CoV-2 
infection index event, was used.

(5) Prior glucocorticoid use was defined by having at least 1 prescription for oral or intravenous dexamethasone, betamethasone, prednisolone, meth-
ylprednisolone, triamcinolone, hydrocortisone, prednisone, or triamcinolone within 1 year to 1 week prior to SARS-CoV-2 infection index event. See S6 
Appendix.

(6) Prior encounters were defined as the count of unique days with at least one billing encounter in the 365 days prior to, but not including, the 5 days 
preceding a patient's SARS-CoV-2 infection. Outpatient and ED visits were assumed to last 1 day.

(7) RECOVER site quartiles are based on overall RECOVER patient enrollment numbers. Sites are categorized by the following; quartile 1: < 140,000 
participants, quartile 2: < 220,000 participants, quartile 3: < 400,000 participants, quartile 4: ≥ 400,000 participants.

https://doi.org/10.1371/journal.pone.0324513.t002

Table 2. (Continued)

https://doi.org/10.1371/journal.pone.0324513.t002
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Table 3. Patient characteristics in PEDSnet at time of SARS-CoV-2 infection by illness severity, April 2020 – April 2021.

Characteristic All Patients Asymptomatic Mild Moderate Severe

N 162,020 101,600 52,689 4,623 3,108

History of prior autoimmune disease1 3% 3% 3% 9% 11%

Mean age (± SD) 12
 (7)

12
 (6)

12
 (7)

11
 (7)

11
 (7)

Female sex 51% 51% 52% 51% 47%

Race/ethnicity2

 Non-Hispanic Asian 3% 3% 3% 2% 3%

 Non-Hispanic Black 14% 14% 14% 17% 24%

 Non-Hispanic White 38% 38% 38% 33% 31%

 Non-Hispanic Other/Multiple 2% 2% 1% 2% 2%

 Hispanic or Latino 29% 28% 31% 36% 31%

 Missing/Unknown 14% 15% 13% 9% 9%

Pediatric medical complexity algorithm: complex/chronic8

 Neither chronic nor complex 90% 91% 90% 76% 57%

 Chronic 4% 4% 5% 6% 4%

 Complex-chronic 6% 5% 5% 18% 39%

Prior substance abuse 2% 2% 2% 4% 6%

Body mass index percentile4

 <5th percentile 2% 2% 3% 5% 6%

 5th – 84th percentile 22% 22% 21% 29% 31%

 85th – 94th percentile 6% 6% 6% 9% 9%

 > 95th percentile 19% 16% 23% 18% 22%

 Missing/Unknown 51% 53% 48% 39% 31%

Prior glucocorticoid use5 8% 6% 8% 33% 46%

Medical insurance

 Private 14% 17% 10% 13% 19%

 Medicare/Medicaid 10% 10% 7% 20% 25%

 Other <1% <1% <1% <1% <1%

 Missing/Unknown 76% 73% 83% 67% 55%

Mean prior encounters6 (± SD) 7 (14) 6 (12) 7 (12) 15 (28) 23 (39)

Index date period

 Apr – June 2020 8% 6% 9% 12% 17%

 Jul – Sep 2020 19% 18% 21% 21% 19%

 Oct – Dec 2020 41% 42% 39% 32% 32%

 Jan – Mar 2021 32% 33% 32% 34% 32%

RECOVER site size7

 1st quartile 10% 10% 9% 9% 9%

 2nd quartile 18% 17% 20% 19% 20%

 3rd quartile 18% 19% 17% 24% 29%

 s4th quartile 54% 54% 55% 48% 42%

Abbreviation: SD, standard deviation.

(1) History of prior autoimmune disease definition: Patients with at least 1 autoimmune disease ICD-9/ICD-10/SNOMED code within any of the autoim-
mune disease concept set at any point prior to their index date.

(2) Race/ethnicity is commonly inconsistent and/or inaccurately captured in the EHR, especially among minorities, and can lead to significant missing 
data and misclassification biases [31,32]. Hispanic ethnicity was defined as its own category and not cross-reported with the other race categories for 
ease of standardization and comparison across a large network of health systems.

(Continued)
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 A higher proportion of patients within the most severe COVID-19 level were male (male: N3C 53%; PCORnet 55%; 
PEDSnet 53%) and those with high disease severity also had more prevalent pre-existing autoimmune disease (N3C 
12%, PCORnet 10%, PEDSnet 11%). Most patients were identified as Non-Hispanic White (N3C 65%; PCORnet 46%; 
PEDSnet 38%). However, compared to the least COVID-19 severity levels, the more severe COVID-19 severity levels 
contained higher percentages of people who were identified as Non-Hispanic Blacks and/or Hispanic Latinos. Although 
most adults, 65–67%, and 90% of children had no indications of past comorbidities, as indicated by CCI or PMCA, a 
higher proportion of patients with CCI of ≥4 or PMCA complex/chronic were found among those who had more severe 
COVID-19. Even though trends across CCI scores and COVID-19 severity levels were similar between the adult net-
works, N3C had a greater number of patients with CCI of ≥4 in hospitalized and on ventilator than PCORnet (44%vs 
36%, respectively). A small percentage of patients had a prior history of substance abuse or glucocorticoid use. Across all 
networks, the percentages of both variables increased as COVID-19 severity levels increased, and this trend was most 
evident in PEDSnet where 46% of those with severe COVID-19 illness had a prior history of glucocorticoid usage.

Among the patients in the N3C network, there was evidence of more healthcare utilization in the year prior to their 
SARS-CoV-2 infection than there was among the PCORnet or PEDSnet patients (19 (SD 34) vs. 12 (SD 19) and 7 (SD 
14) healthcare encounters respectively). Across networks, higher COVID-19 severity was associated with increased inci-
dence of prior healthcare utilization.

Across the three networks, more SARs-CoV-2 infections occurred between October- December 2020 than during other 
time periods. All study populations were primarily drawn from larger RECOVER sites (N3C 65%; PCORnet 75%; PEDSnet 
54%), although the range of COVID-19 severity levels was seen at all RECOVER sites.

Risk of autoimmune disease

Table 4 and Figs 2–4 display unadjusted incidence rates per 1000 person-years and Kaplan-Meier curves for autoimmune 
disease incidence by COVID-19 severity levels for each EHR network, starting > 30 days after the index date. Within N3C 
and PEDSnet, unadjusted overall autoimmune disease incidence per 1000 person-years increased as COVID-19 severity 
levels increased. However, within PCORnet, unadjusted autoimmune disease incidence was similar across the COVID-19 
severity categories. Cumulative incidence analyses accounting for the competing risk of death obtained similar results as 
the Kaplan-Meier models (S1-S3 Figs).

The most common incident autoimmune diseases arising in the those with evidence of SARS-CoV-2 infection, as 
indicated by incidence per 1000 person-years, aligned in the two adult networks; the pediatric population had notable 
similarities to the adults. Thyroid disease, psoriasis or psoriatic arthritis, and inflammatory bowel disease were consistent 
across all 3 EHR networks. Among adults, inflammatory arthritis was the most common autoimmune disease arising from 

(4) Body Mass Index (BMI in kg/m2) is categorized according to the World Health Organization (WHO) and National Institute of Health (NIH) standards. 
The most recent recorded BMI, either on or up to 1- year prior to the SARS-CoV-2 infection index event, was used.

(5) Prior glucocorticoid use was defined by having at least 1 prescription for oral or intravenous dexamethasone, betamethasone, prednisolone, 
 methylprednisolone, triamcinolone, hydrocortisone, prednisone, or triamcinolone within 1 year to 1 week prior to SARS-CoV-2 infection index event. See 
S6 Appendix.

(6) Prior encounters were defined as the count of unique days with at least one billing encounter in the 365 days prior to, but not including, the 5 days 
preceding a patient's SARS-CoV-2 infection. Outpatient and ED visits were assumed to last 1 day.

(7) RECOVER site quartiles are based on overall RECOVER patient enrollment numbers. Sites are categorized by the following; quartile 1: < 140,000 
participants, quartile 2: < 220,000 participants, quartile 3: < 400,000 participants, quartile 4: ≥ 400,000 participants.

(8) Pediatric medical complexity algorithm (PMCA version 3.0): complex/chronic is an algorithm to define pediatric chronic disease and medical complex-
ity using patients’ previous EHR diagnosis codes within the 3 years before the SARS-CoV-2 infection index event. The most conservative definition of 
the algorithm was used [33].

https://doi.org/10.1371/journal.pone.0324513.t003

Table 3. (Continued)

https://doi.org/10.1371/journal.pone.0324513.t003
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SARS-CoV-2 infection, and Sjögren’s disease also had high incidence. Incident type 1 diabetes and hematological auto-
immune diseases were specifically found in the pediatric population. A complete list of incidence rates per  1000 –person- 
years among the overall population for any new autoimmune disease by EHR network can be found in S9 Appendix.

Unlike in N3C and PEDsnet, the unadjusted incidence of autoimmune disease in PCORnet was lowest in the ED level 
of severity, followed by those hospitalized with ventilation category; it was highest in the hospitalized without ventilation 
and outpatient categories. In PEDSnet, the largest difference in incidence rates between severity levels was observed for 
the risks of type 1 diabetes among those with moderate vs. severe COVID-19 (IR 0.98 vs. 2.49 per 1000 person-years).

In our univariable analyses (data not shown), we found age, sex, race, ethnicity, obesity, smoking, and comorbidities to 
be true confounders (associated with risk of infection and risk of autoimmune disease) and thus adjusted for them in our 
models. The results of the adjusted Cox regression models for risk of developing a new autoimmune disease > 30 days 
after SARS-CoV-2 infection index in each of the three networks, according to COVID-19 severity, are shown in Table 5,  
S4 Fig, and S2-S4 Tables. In N3C, PCORnet, and PEDSnet, patients in the highest COVID-19 severity levels had 
increased risk of any new autoimmune disease compared to those in the least severe COVID-19 levels after adjusting for 
age, sex, and race [aHR 2.09 (95% CI 1.85–2.36); aHR 1.29 (95% CI 1.17–1.40); aHR 6.93 (95% CI 5.49–8.73), respec-
tively]. These findings persisted in the fully adjusted models [N3C: aHR 1.47 (95% CI 1.33–1.66); PCORnet: aHR 1.14 
(95% CI 1.02–1.26); PEDSnet: aHR 3.14 (95% CI 2.42–4.07)].

Table 4. Incidence rates per 1000 person-years for any new autoimmune disease and each EHR network’s five most prevalent autoimmune 
diseases for all COVID-19 patients, stratified by WHO severity categories9, starting > 30 days after SARS-CoV-2 infection index date.

Most Common New 
 Autoimmune Diseases

All Patients
(n = 1,267,802)

Outpatient
(n = 980,716)

Emergency 
Department
(n = 144,837)

Hospitalized
(n = 121,732)

Hospitalized and on Ventilator
(n = 20,517)

N3C Any new autoimmune disease 7.77 7.09 8.69 12.20 14.37

#1 Inflammatory arthritis or RA 1.41 1.22 1.67 2.70 2.77

#2 Psoriasis or psoriatic arthritis 1.32 1.29 1.38 1.60 1.67

#3 Hashimoto thyroiditis 1.07 1.10 1.00 0.90 0.85

#4 Inflammatory bowel disease 0.75 0.69 0.89 1.10 1.07

#5 Sjögren’s disease 0.61 0.57 0.76 0.80 1.01

PCORnet Most Common New Autoim-
mune Diseases

All Patients
(n = 601,635)

Outpatient
(n = 426,943)

Emergency 
Department
(n = 79,201)

Hospitalized
(n = 63,600)

Hospitalized and on Ventilator
(n = 31,981)

Any new autoimmune disease 4.27 4.32 4.00 4.39 4.14

#1 Inflammatory arthritis or RA 0.79 0.78 0.87 0.72 0.80

#2 Sjögren’s disease 0.72 0.74 0.74 0.63 0.53

#3 Hashimoto thyroiditis 0.62 0.69 0.61 0.32 0.38

#4 Psoriasis or psoriatic arthritis 0.61 0.65 0.50 0.51 0.44

#5 Inflammatory bowel disease 0.48 0.52 0.41 0.32 0.50

PEDSnet Most Common New Autoim-
mune Diseases

All Patients
(n = 162,020)

Asymptomatic
(n = 101,600)

Mild
(n = 52,689)

Moderate
(n = 4,623)

Severe
(n = 3,108)

Any new autoimmune disease 2.71 2.27 2.44 7.80 14.50

#1 Thyroid disease 0.33 0.27 0.38 0.65 0.99

#2 Inflammatory bowel disease 0.32 0.32 0.22 1.20 0.50

#2 Type 1 diabetes 0.32 0.27 0.26 0.98 2.49

#4 Hematological: other or 
unspecified

0.28 0.24 0.22 0.98 1.82

#5 Psoriasis or psoriatic arthritis 0.23 0.18 0.30 0.43 0.33

Abbreviation: WHO, World Health Organization.

(9) World Health Organization COVID-19 categorization [35].

https://doi.org/10.1371/journal.pone.0324513.t004

https://doi.org/10.1371/journal.pone.0324513.t004
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In N3C, those hospitalized with ventilation had elevated risks for new autoimmune disease compared to outpatients, as 
did those within the ED or hospitalized group [aHR 1.13 (95% CI 1.07–1.18), aHR 1.33 (95% CI 1.26–1.41), respectively]. 
In contrast, PCORnet patients hospitalized without ventilation had a 18% reduction in risk when compared to outpatients 
[aHR 0.82 (95%CI 0.73–0.90)]. In PEDsnet, risk of new autoimmune disease increased with increasing COVID-19 sever-
ity levels in all models, but in only the moderate and severe categories were risks significantly elevated compared to those 
in the asymptomatic infection category. In addition to those with severe infections, children with moderate COVID-19 had 
a 2-fold increase in autoimmune disease risk after full adjustment [aHR 2.15 (95% CI 1.65–2.79)].

Secondary analyses

When excluding patients with a prior history of any autoimmune disease, associations of COVID-19 severity with the risk 
of autoimmune disease persisted, but slightly attenuated, among those in the emergency department or hospitalized 
severity levels within N3C and moderate or severe levels in PEDSnet [N3C aHR 1.11 (95% CI 1.05–1.17), aHR 1.19 (95% 

Fig 2. N3C Kaplan-Meier curves for any new incident autoimmune disease. N3C Kaplan-Meier survival analysis comparing any autoimmune 
 disease-free survival probabilities by COVID-19 severity level by time in days.

https://doi.org/10.1371/journal.pone.0324513.g002

https://doi.org/10.1371/journal.pone.0324513.g002
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CI 1.12–1.27),respectively; PEDSnet aHR 2.19 (95% CI 1.64–2.93), aHR 3.29 (95% CI 2.47–4.39), respectively]. In N3C 
and PCORnet, those hospitalized with ventilation had an increased, but non-significant, risk of autoimmune disease [aHR 
1.15 (95% CI 0.98–1.35), aHR 1.13 (95% CI 0.99–1.27), respectively]. Sex stratification of all fully-adjusted models, mod-
els with and excluding those with prior autoimmune disease, did not reveal any significant difference by sex in all three 
EHR networks.

Discussion

In this large US-based EHR study, we examined the association of COVID-19 severity with the risk of new autoimmune 
disease diagnosis. Our findings suggest that the risk of being diagnosed with an autoimmune disease after SARS-CoV-2 
infection was highest among those who experienced the most severe COVID-19, i.e., those who were hospitalized and 
ventilated. These findings were observed in three different U.S.-based networks, including one in a pediatric population. 
Our analysis corroborates and extends findings from recent studies which found that more severe COVID-19 illness might 
be associated with increased subsequent autoimmune disease risk [15,23,40].

Fig 3. PCORnet Kaplan-Meier curves for any new incident autoimmune disease. PCORnet Kaplan-Meier survival analysis comparing any autoim-
mune disease-free survival probabilities by COVID-19 severity level by time in days.

https://doi.org/10.1371/journal.pone.0324513.g003

https://doi.org/10.1371/journal.pone.0324513.g003
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In these three networks, the most common adult autoimmune diseases newly diagnosed after SARS-CoV-2 infec-
tion shared by both adult and pediatric networks were autoimmune thyroiditis (Hashimoto’s in adults), psoriasis or 
psoriatic arthritis, and inflammatory bowel disease. In the pediatric population, the third most common autoimmune 
disease was type I diabetes, which has also been reported after other viral infections such as mumps, parainfluenza, 
human herpes virus 6, enteroviruses, and Coxsackievirus B1 (CVB1) serotype among children [41,42]. In the adult 
populations, inflammatory arthritis/rheumatoid arthritis (RA) was most common. This was also reported in a study in a 
Colombian cohort in which the incidence rate ratio for rheumatoid arthritis following SARS-CoV-2 infection was 2 [43]. 
The alignment of these results across different networks and studies is important as it reinforces the consistency and 
reliability of the findings.

Past studies have reported increases in the risk of developing systemic vasculitis after SARS-CoV-2 infection as among 
the most common incident autoimmune disease sequalae [4,17,22,23]. Four of five large recently published studies on 
this topic employed only one billing code to define incident autoimmune disease, which can be highly non-specific, partic-
ularly in the setting of the types of vague and ongoing constitutional symptoms that emerged after SARS-CoV-2 infection. 
Our study required a more specific definition, two separate encounters with similar autoimmune ICD9, ICD10 or SNOMED 

Fig 4. PEDSnet Kaplan-Meier curves for any new incident autoimmune disease. PEDSnet Kaplan-Meier survival analysis comparing any autoim-
mune disease-free survival probabilities by COVID-19 severity level by time in days. Small cell sizes (<20) are suppressed for patient privacy.

https://doi.org/10.1371/journal.pone.0324513.g004

https://doi.org/10.1371/journal.pone.0324513.g004
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codes recorded at least 1 day apart to improve specificity and positive predictive value [44]. Some autoimmune diseases, 
such as vasculitis, may have been overlooked as they may have been self-limited (e.g., Henoch-Schoenlein purpura in 
children, or leukocytoclastic vasculitis). In past studies, systemic lupus erythematosus (SLE) and Sjögren’s disease were 
reported to be common post-SARS-CoV-2 infection [4,16]. In the current study, we found that autoimmune hemolytic ane-
mia and Evan’s syndrome, which can precede childhood SLE, were among the five most common PEDSnet autoimmune 
diseases associated with SARS-CoV-2 infection.

The association of viral infection severity with increased risk of autoimmune disease is important and biologically 
plausible. It may be related to cytokine release syndrome seen in severe cases [45,46]. While influenza A and other viral 
infections induce release of many inflammatory cytokines, coronaviruses in general and SARS-CoV-2 in particular, have 
been shown to have very strong stimulatory influences on immune and inflammatory cytokines, such as type I interferons 
(IFNs), key anti-viral cytokines limiting viral infection via activation of the innate immune system [46,47]. Neutrophil extra-
cellular traps (NETs), which stimulate production of type I IFNs, have been identified in severe COVID-19 illness and addi-
tionally are implicated in autoimmune disease pathogenesis. NETs prime dendritic cells to present their nuclear contents, 
stimulating B cell production and affinity maturation along with formation and release of autoantibodies [48,49]. Thus, host 
immune responses developed to protect from viral infection, when not appropriately downregulated, may contribute to 
increased risk of developing autoimmune disease, including in the context of viral infections.

Strengths and limitations

Our study has several strengths including large nationwide EHR networks, the inclusion of a pediatric population, the 
requirement for two independent billing codes on separate days for a new autoimmune diagnosis (increasing AD diag-
nosis positive predictive value) [44], and secondary analyses excluding those with pre-existing autoimmune disease of 
any kind. The simultaneous analysis of the three EHR networks, which contain only 20 overlapping sites with each other, 
not only broadened the scope of our analysis, but also enabled us to establish a more definitive connection between 
the severity of COVID-19 requiring ICU admission/ventilation, compared to less severe COVID-19, and the subsequent 
increase in incident autoimmune disease over a two-year period.

Of recent studies of autoimmune disease arising after SARS-CoV-2 infection, only one has included children [17]. Our 
inclusion of a large pediatric population provides a more comprehensive understanding of the disease’s impact on this 

Table 5. Multivariable adjusted hazard ratios for incident autoimmune disease by COVID-19 severity categories for N3C, PCORnet, and PEDS-
net from day > 30 to end of study period.

Outcomes Outpatient
aHR (95% CI)

Emergency 
Department
aHR (95% CI)

Hospitalized
aHR (95% CI)

Hospital-
ized and on 
ventilator
aHR (95% CI)

N3C Model 1: age, sex, race REF 1.24 (1.19-1.30) 1.69(1.61-1.78) 2.09(1.85-2.36)

Model 2: full model10 REF 1.13(1.07-1.18) 1.33(1.26-1.41) 1.47(1.33-1.66)

PCORnet Model 1: age, sex, race REF 0.91(0.84-0.99;) 0.91(0.83-0.99) 1.29(1.17-1.40)

Model 2: full model10 REF 0.95(0.88-1.03) 0.82(0.73-0.90) 1.14(1.02-1.26)

PEDSnet Asymptom-
atic
aHR (95% CI)

Mild
aHR (95% CI)

Moderate
aHR (95% CI)

Severe
aHR (95% CI)

Model 1: age, sex, race REF 1.07 (0.92-1.25) 3.65 (2.84-4.69) 6.93 (5.49-8.73)

Model 2: full model10 REF 1.04 (0.89-1.22) 2.15(1.65-2.79) 3.14 (2.42-4.07)

Abbreviation: aHR (95%CI), adjusted Hazard ratio with 95% confidence interval.

(10) Full model adjusted for age, sex, race, medical insurance type, healthcare utilization, date of SARS-CoV-2 infection, comorbidities (CCI for adults, 
PMCA for children), substance use disorder, smoking status (adults only), body mass index, glucocorticoid use, and RECOVER enrollment site size.

https://doi.org/10.1371/journal.pone.0324513.t005

https://doi.org/10.1371/journal.pone.0324513.t005
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critical demographic, with its susceptibility to a different spectrum of autoimmune diseases. Given the genetic predisposition 
that increases the likelihood of those with existing autoimmune disease to develop a new AD, we included all participants 
in our primary analyses and applied a stricter incident AD definition to those with a history of prior AD. In our secondary 
analyses excluding all patients with evidence of any autoimmune disease in the baseline period, we obtained similar results 
as our primary analysis. Although risk for AD fell just short of significance in N3C and PCORnet hospitalized with ventilation 
patients, we still believe that this association is plausible. The change in significance is likely due to inherent EHR limita-
tions (e.g., patients interacting with the same healthcare system in follow up or potential misclassified in COVID-19 severity 
categories), as PEDSnet and other N3C severity levels showed increased risk for AD that remained significant. However, 
we acknowledge that this still requires further investigation as the established link between severe COVID-19 and autoim-
mune disease may be confounded by factors such as previous immunosuppressant therapy, potential cross-contaminant 
use of immunosuppression COVID-19 medications (e.g., combination therapies with  disease-modifying anti-rheumatic 
drugs), differential COVID-19 treatment in fear of cross-contaminant drug use, and increased prevalence of comorbidities 
associated with severe infection (e.g., diabetes, obesity, older age) within the prior autoimmune disease population [50]. 
Our study was also comprehensive in employing both SNOMED and ICD10 codes, mitigating some of the bias that may 
depend on whether an ICD10 code was available and reducing the barrier for information sharing between registries that 
used only SNOMED or only ICD10 codes. The robustness of our findings thus strengthens the plausibility of the association 
between increased COVID-19 severity and increased risk of new autoimmune disease.

While our study provides valuable insights, it is important to acknowledge its limitations. Given the lack of test supply 
early in the pandemic, testing for SARS-CoV-2 infection in the U.S. was initially reserved for hospitalized patients, while 
those with presumed SARS-CoV-2 infection not sick enough to require hospitalization were urged to quarantine at home 
contributing to type 2 error by not counting true cases of COVID-19. To mitigate the possibility of misclassification, we 
included a clinical diagnosis of COVID-19. Recent studies have also demonstrated that relying on polymerase chain reac-
tion (PCR)-confirmed or PCR or antigen test-confirmed infections may not capture those in the community or those diag-
nosed by home testing or those who were felt to have classical chest x-ray findings of COVID-19 [4,15,17,22]. Although 
we employed two billing codes on separate days to identify incident autoimmune disease, rather than one as in most past 
studies, we acknowledge that no validated definition for all autoimmune disease exists or is feasible in such data, and 
it may have led to some misclassification of disease status. We began follow-up 30 days after the index SARS-CoV-2 
infection to reduce the likelihood that infection-related non-specific symptoms of systemic inflammation were miscoded as 
new autoimmune disease, but this may still have occurred. Another potential limitation is that two years of follow-up would 
not capture long-term risk of autoimmune disease; autoantibodies may be present for up to ten years prior to development 
of RA, for example [51]. Additionally, patients with autoimmune diseases often experience prolonged “diagnostic delays”, 
both due to lack of recognition of classical signs and symptoms, and due to the slow onset of disease. Thus, it is likely that 
some cases of autoimmune disease were undiagnosed in these study cohorts. The broad nature of symptoms attributed 
to post-acute syndrome of COVID-19 (PASC) may have also led to underdiagnosis of autoimmune disease in individuals 
after COVID-19. However, this misclassification would likely have biased our results toward the null, if at all. Disparate 
findings between N3C and PCORnet with respect to COVID severity and risk of autoimmune disease may be due in part 
to inherent network differences. During the initial phases of COVID-19 pandemic, ICUs were at capacity and many smaller 
hospitals sought higher level care for the most seriously ill patients. Patients who were more ill may have been referred 
to larger clinical sites represented in PCORnet for their COVID-19 care, but not followed there before or after, which 
may explain some of the discrepancies seen between the N3C and PCORnet. Patients in N3C had more encounters in 
their EHR and higher baseline healthcare utilization than did those enrolled in PCORnet; incomplete capture of baseline 
covariates and outcomes may have influenced results in PCORnet more than the other networks. Additionally, despite the 
discrepancy COVID-19 severity levels aHRs, we identified prior utilization had an association with both COVID-19 severity 
and incident AD with risk of incident AD increasing as prior utilization increases across networks (S5 Fig). Unfortunately, 
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prior utilization is especially sensitive to data warehouse constructions and architecture, and this may have contributed to 
disparate results seen across networks.

While we adjusted for all important confounders identified, there was much missing data on some important lifestyle 
factors, such as that smoking, which can both increase COVID-19 severity and risk factor for autoimmune conditions such 
as rheumatoid arthritis [52–54] Thus, there is the possibility of both misclassification and residual confounding by such 
shared risk factors. We were also unable to include vaccination status as immunization was not well documented in the 
RECOVER EHR cohort, and therefore strategically selected an enrollment period a priori so that vaccination use would 
naturally be limited in the study population. However, we could not fully assess the role of vaccination on AD incidence 
during 2 years of follow-up. A subsequent check of raw vaccination numbers confirmed that <1% of the population was 
vaccinated with any COVID-19 vaccine in the 180–14 days prior of their index SARS-CoV-2 infection across EHR net-
works. Due to our study period, we were unable to assess the complex relationship between vaccination, autoimmune dis-
ease, and COVID-19 that future research must address. Specifically, the potential for vaccination to both mitigate (through 
SARS-CoV-2 prevention) or increase autoimmune disease risk via mechanisms such as molecular mimicry, adjuvants, 
and bystander activation requires further study [55]. Our study design was also not intended to investigate the impact of 
reinfections after the index infection or other putative effect modifiers on autoimmune disease outcomes. Furthermore, we 
performed analyses adjusting for multiple potential confounders but were unable to perform propensity score matched or 
weighted analyses given relatively small sample sizes in each of the categories of infection, particularly among the PEDS-
net population.

Conclusion

The current study presents compelling evidence of an association of increasing acute COVID-19 severity with increasing 
risk of developing autoimmune diseases in the period up to two years following infection. Ongoing data collection and 
analyses of post-COVID-19 syndromes and autoimmune disease at the population level may be able to elucidate rela-
tionships of incident autoimmune disease with different COVID-19 variants, and the influence of having more than one 
SARS-CoV-2 infection. An equally important question for future studies is whether primary SARS-CoV-2 infection after 
April 1, 2021, potentially with less virulent viral strains that began to circulate in late 2021, along with increasing population 
vaccination, are associated with lower future risks of post-COVID-19 autoimmune disease.
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