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Opinion 

Skeletal muscle adaptations and 
post-exertional malaise in long COVID 
Highlights 
Long COVID occurs when symptoms 
persist for more than 3 months after 
acute SARS-CoV-2 infection. Symptoms 
include fatigue, brain fog, myalgia, and 
post-exertional malaise (PEM), which 
worsens with physical, mental, or cogni-
tive exertion. 

Long COVID shares many characteris-
tics with myalgic encephalomyelitis/ 
chronic fatigue syndrome (ME/CFS), 
particularly PEM, which is necessary 
for ME/CFS diagnosis. 
Braeden T. Charlton 1 ,2 , Richie P. Goulding 1,2 , Richard T. Jaspers 1,2 , 
Brent Appelman 3 ,4 , Michèle van Vugt4,5, and Rob C.I. Wüst 1,2, *

When acute SARS-CoV-2 infections cause symptoms that persist longer than 3 
months, this condition is termed long COVID. Symptoms experienced by pa-
tients often include myalgia, fatigue, brain fog, cognitive impairments, and 
post-exertional malaise (PEM), which is the worsening of symptoms following 
mental or physical exertion. There is little consensus on the pathophysiology of 
exercise-induced PEM and skeletal-muscle-related symptoms. In this opinion 
article we highlight intrinsic mitochondrial dysfunction, endothelial abnormali-
ties, and a muscle fiber type shift towards a more glycolytic phenotype as main 
contributors to the reduced exercise capacity in long COVID. The mechanistic 
trigger for physical exercise to induce PEM is unknown, but rapid skeletal muscle 
tissue damage and intramuscular infiltration of immune cells contribute to PEM-
related symptoms. 
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Long COVID is associated with intrinsic 
skeletal muscle mitochondrial dysfunc-
tion, endothelial abnormalities, and a 
shift towards more glycolytic muscle fi-
bers, which contribute to a lower exercise 
capacity. 

Several potential mechanisms may ex-
plain skeletal muscle abnormalities in 
long COVID, including local hypoxia, de-
conditioning, autoimmunity, electrophys-
iological changes, and central fatigue. 

There are no treatments for long COVID 
or PEM, but ongoing trials include 
immunoadsorption, dietary supplements, 
and anti-inflammatory/antiviral drugs.
Long COVID: persistent symptoms after acute infection 
Since 2020, acute infections with severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) 
have affected 775 million people worldwide [1]; in ∼10% of these people symptoms do not 
completely resolve after 3 months [2]. The persistence of one or multiple symptoms beyond 3 months 
is known as post-acute sequelae of coronavirus disease 2019 (COVID-19) (PASC) or ‘long COVID’, 
which cannot be explained by other diseases, comorbidities, hospitalization, or aging [1,3]. The 
pathophysiology of long COVID is currently unknown, but deconditioning [4,5], viral persistence [6], 
dysregulated immune system [7], localized hypoxia, and/or endothelial dysfunction [8], as well as 
autoimmunity [2], have been predominantly suggested as potential determinants (Figure 1).

The most prevalent long COVID symptoms are fatigue, brain fog, cognitive impairments, muscle 
pain (myalgia), and post-exertional malaise (PEM) (Figure 1); PEM is the worsening of symptoms 
or onset of new symptoms up to 48 h following physical or cognitive exertion above a patient- and 
time-specific threshold, and can last for days to weeks or even months [9–11]. Typically, exercise 
reduces mortality and improves treatment outcomes in almost all chronic diseases [12], but the 
occurrence of PEM prevents patients with long COVID from engaging in regular exercise. 

PEM is also a hallmark diagnostic symptom for patients with myalgic encephalomyelitis/chronic 
fatigue syndrome (ME/CFS) [13]; many cases of ME/CFS are known to occur following either 
bacterial or viral infections, typically not requiring hospitalization [14,15]. Patients with ME/ 
CFS exhibit symptoms similar to those of patients with long COVID, and many patients with 
long COVID tend to meet the Canadian Consensus Criteria for ME/CFS diagnosis [13]. Similarly 
to long COVID [16], a large proportion of patients with ME/CFS are female and middle-aged 
[14,15]. While long COVID research is in its infancy, ME/CFS research can help in our better un-
derstanding of long COVID. 
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Figure 1. Common long COVID 
symptoms (blue boxes) and 
pathophysiological hypotheses on 
the mechanisms underlying tissue 
alterations (red boxes). 
Figure generated with BioRender.
Given the increasing recognition of long COVID, understanding muscle-specific alterations is 
essential for developing targeted therapeutic strategies. Here we provide a comprehensive over-
view of current evidence and highlight knowledge gaps with respect to the current understanding 
of skeletal muscle adaptations occurring in long COVID, and how this differs from or resembles 
other post-acute infectious diseases (e.g., ME/CFS); we also briefly outline potential therapies 
for patients with long COVID. Due to the high prevalence of patients exhibiting PEM and fatigue 
[11], the skeletal muscle abnormalities outlined here will reflect these specific phenotypes; how-
ever, it is unknown whether other phenotypes (i.e., those with smell/taste difficulties [11]) observe 
similar alterations. 

Whole-body exercise and skeletal muscle adaptations in long COVID 
Reduced aerobic capacity 
The ability to perform aerobic exercise is a key determinant of quality of life [17]. Patients with long 
COVID exhibit a reduced aerobic capacity [18,19] and earlier onset of lactate accumulation during 
exercise [20,21]. The reduced exercise capacity in patients with long COVID has most often been 
attributed to alterations in skeletal muscle, with minor contributing impairments of the pulmonary 
and cardiac systems [22]. Dysregulated breathing and improper heart rate responses indicate 
that a dysfunctional autonomic nervous system might be a contributor. Alterations in skeletal mus-
cle structure and function in long COVID – such as mitochondrial function and content, 
capillarization, and muscle fiber size and type – are likely to contribute to the reduced exercise ca-
pacity of patients [18,21]. Figure 2 outlines skeletal muscle alterations in patients with long COVID. 
While evidence for impaired aerobic capacities in long COVID continues to grow, the similarities to 
aerobic deficits observed in ME/CFS are becoming more apparent [23,24].

Skeletal muscle mitochondria and metabolism 
Aerobic capacity is partly dictated by mitochondrial content and function [19–22], but fragmenta-
tion and spatial distribution of the mitochondrial reticulum also play important roles [25,26]. 
Markers for skeletal muscle mitochondrial content in patients with long COVID have yielded in-
consistent results, with some studies reporting lower mitochondrial content [18], while others
Trends in Endocrinology & Metabolism, July 2025, Vol. 36, No. 7 615

move_f0010
Image of &INS id=


Trends in Endocrinology &Metabolism
OPEN ACCESS

TrendsTrends inin EndocrinologyEndocrinology & MetabolismMetabolism 

Figure 2. Contribution of skeletal muscle cell types in long coronavirus disease 2019 (COVID). (A) Capillary basal 
lamina thickening observed in patients with long COVID (from Aschman et al., 2023 [28]). (B) Lower succinate dehydrogenase 
activity in patients with long COVID compared with healthy controls (from Colosio et al., 2023 [18]). (C) CD68+ macrophage 
infiltration between muscle fibers (from Aschman et al., 2023 [28]). (D) High skeletal muscle sodium content, as viewed using 
3T magnetic resonance imaging (from Petter et al., 2022 [70]). (E) Connective tissue content was similar in long COVID as in 
healthy controls (from Colosio et al. 2023 [18]). (F) Patients with long COVID have abnormal mitochondria imaged using 
electron microscopy (from Bizjak et al., 2023 [19]). (G) Amyloid-containing deposits can be found in skeletal muscle and 
blood of patients with long COVID (unpublished data). (H) Patients with long COVID have more glycolytic, type II muscle 
fibers. Dark blue represents type I fibers, yellow represents type IIa fibers, turquoise represents type IIa/IIx fibers 
(Appelman et al., 2024 [21]). Figure created with BioRender.
showed no differences compared with individuals who have recovered from acute COVID [21]. 
Nonetheless, skeletal muscle mitochondrial respiration in patients with long COVID is consistently 
impaired compared with that observed in healthy/recovered individuals [18,21], highlighting a 
contributing role for a lower intrinsic mitochondrial function in a lower exercise capacity. Recently, 
evidence of lower mitochondrial complex I activity in long COVID might indicate direct virus-
induced alterations [19]. Some abnormalities in mitochondrial ultrastructure (i.e., size, density) 
in patients with long COVID have been described, some of which are worsened in patients with 
ME/CFS [19,27]. An increased expression of mitochondrial fission proteins and decreased ex-
pression of mitochondrial fusion proteins [18] suggest altered mitochondrial fission/fusion regula-
tion in patients with long COVID. It remains unknown whether mitochondrial distribution or 
mitophagy are also affected, and how this relates to disease severity and progression. 

Capillary density and endothelial function 
An optimal muscle capillary network and intact vascular function are needed to provide sufficient 
oxygen and substrates to skeletal muscle fibers. Skeletal muscle capillary-to-fiber ratios are either 
not altered [21] or lower [28] in patients with long COVID. Alterations in endothelial cells, such as
616 Trends in Endocrinology & Metabolism, July 2025, Vol. 36, No. 7
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vasodilatory dysfunction [29], endothelial basal laminae thickening [28,30], or endothelial barrier 
damage [31], have been described in these patients. This could cause capillary hypoperfusion, 
reduced oxygen and substrate diffusion, or an increase in the resistance for diffusion of oxygen 
and oxidative metabolic substrates [22,32]; however, experimental data are lacking. Under nor-
mal physiological conditions, skeletal muscle fatigue is related to the accumulation of fatigue-
inducing metabolites [33]; however, it is unknown whether hypoperfusion, capillary thickening, 
or endothelial dysfunction may contribute to earlier fatigue in long COVID. 

Muscle fiber type, size, and distribution 
Composition of muscle fiber type shapes the functional and metabolic alterations in skeletal muscle 
during exercise. Oxidative (type I) fibers typically have high mitochondrial densities, providing resis-
tance to fatigue. Glycolytic (type IIa or IIa/x) fibers produce more power, but have lower mitochon-
drial densities [34]. Patients with long COVID have more glycolytic muscle fibers [18], similar to 
patients with other chronic diseases [35,36]. However, no longitudinal data exist to conclude 
whether those with higher glycolytic fiber proportions are more prone to developing long COVID, 
or whether the disease progression induces a shift in composition of muscle fiber type. 

Limited evidence suggests a sex-specific  type  I  fiber atrophy in long COVI D [21]. Whether muscle 
atrophy occurs in long COVID is currently unclear, as many studies also included patients that had 
been hospitalized or presented with other comorbidities, which may confound the results [3]. 
Patients with long COVID exhibiting small-fiber neuropathy [37,38] also present more frequently 
with very small, atrophic muscle fibers [21,30]. The relationship between small-fiber neuropathy, 
prevalence of small, atrophic muscle fibers, and possible type I specific or general atrophy warrants 
further investigation. 

PEM 
Currently, diagnosis of PEM is strictly clinical, wherein patients must fulfill criteria for the DePaul 
Symptom Questionnaire – Post-Exertional Malaise (DSQ-PEM) questionnaire [39]. Two-day exer-
cise tests and handgrip strength tests can help to confirm PEM diagnosis [40], but patient burden 
for a 2-day exercise test is substantial. Future research should focus on biomedical biomarkers to 
complement the DSQ-PEM. The underlying mechanism for PEM is currently unknown; however, 
PEM can also occur after cognitive exertion, suggesting a neurological or circulating contributor 
to the onset of PEM. Skeletal muscle adaptations are poorly understood in the context of PEM, 
but a 2-day muscle biopsy protocol after PEM induction suggested that skeletal muscle abnor-
malities worsen upon PEM onset [21]. Mitochondrial respiration and markers for mitochondrial 
density and metabolism decreased 1 day after maximal, PEM-inducing exercise in patients 
with long COVID [21]. Maximal exercise resulted in more severe skeletal muscle damage and en-
hanced immune cell infiltration [21]. Whether a similar process occurs in patients with ME/CFS or 
other post-acute infectious diseases is unknown. While long COVID and ME/CFS are the most 
prevalent diseases exhibiting PEM, subsets of patients with multiple sclerosis also experience 
PEM [41]. Future studies should include other populations to fully understand the underlying pa-
thology of PEM. 

Proposed pathological mechanisms for PEM 
The underlying mechanisms for the skeletal muscle adaptations, and their time course of disease 
progression in patients with long COVID, are unknown. Further, it is not understood how these 
structural alterations relate to rapid changes underlying PEM. Multiple hypotheses exist that 
may explain skeletal muscle abnormalities in these patients (Figure 3). Here, we discuss the 
most likely candidates of these abnormalities, namely deconditioning, local hypoxia, autoimmu-
nity, electrophysiological alterations, and central fatigue, according to the most recent literature.
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Figure 3. Schematic illustration of the five predominant mechanisms underlying long COVID skeletal muscle 
symptoms: local hypoxia, deconditioning, electrophysiological alterations, autoimmunity, and central 
fatigue. (A) Local hypoxia may be due to amyloid-containing clots (top panel), endothelial dysfunction (middle panel), or 
capillary thickening increasing oxygen diffusion distances (bottom panel). (B) Deconditioning results in muscle fiber 
atrophy, a loss of mitochondria, and capillary rarefaction, reducing aerobic capacity. (C) Electrophysiology may be altered 
by changes in ion distributions or effects on specific ion channels. (D) Generation of autoantibodies may target tissue 
receptors, including skeletal muscle. (E) Central fatigue may be caused by abnormal neurological processes, irregular 
responses to exercise, and feelings of myalgia and pain. Figure created with BioRender. 
Deconditioning 
Due to the development of PEM, several research groups have proposed that the skeletal 
muscle alterations in long COVID are simply due to deconditioning or physical inactivity 
[4,5]. Although patients with long COVID tend to be less active than healthy individuals 
[21], many still  maintain physical activity levels that are similar to the average US citizen 
[42] who does not suffer from PEM. Physically inactive people do not suffer from PEM, and 
the skeletal muscle alterations in long COVID are distinct from those resulting from strict 
bed rest. Strict bed rest or limb immobilization induces muscle atrophy, capillary rarefaction 
(already present within 6 days of bed rest), insulin insensitivity, and an altered mitochondrial 
substrate utilization [43–45], conditions that are not predominantly observed in patients with 
long COVID. It should be noted that, as with any chronic disease, the increase in sedentary 
activity will have long-term impacts on health outcomes [46]. While the consequences of de-
conditioning could have long-term impacts on severely affected patients with long COVID in 
particular, the observed skeletal muscle adaptations in long COVID are distinct from those 
occurring after deconditioning. 

Local tissue hypoxia 
Some of the skeletal muscle adaptations in patients with long COVID resemble those occurring fol-
lowing chronic hypoxia exposure, which have led to the suggestion that patients may experience 
hypoxia. In hypoxic conditions (e.g., at high altitude), perceived exertion during exercise increases 
and exercise performance decreases [47]. Skeletal muscle metabolism shifts to non-oxidative glu-
cose oxidation [48], which increases blood lactate during submaximal exercise [49]. Chronic hyp-
oxia results in higher hematocrit values [50], lower mitochondrial content and function, and 
increases in glycolytic enzymes [51]. Whether the capillary-to-fiber ratio and capillary density 
change in long COVID is not clear, but hypoxia-induced muscle atrophy results in higher capillary 
densities [50,52,53].
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Patients with long COVID, however, do not exhibit reduced arterial oxygen pressures and saturation 
during exercise, but oxygen extraction [22] and muscle oxygen diffusing capacity [54] may be im-
paired. A lower mitochondrial function, independent of tissue oxygenation [18,19,21], also results 
in increased lactate production during exercise [55]. Such phenomena can be misinterpreted as 
simply caused by local hypoxia. However, the contribution of local hypoxia deserves further 
study. Local tissue hypoxia in patients with long COVID may be induced by capillary blockage 
and/or endothelial dysfunction, preventing oxygen and substrate delivery. Evidence of thickening 
of the capillary basal lamina has been observed in patients with long COVID [28], suggesting an im-
paired muscle oxygen diffusing capacity. Amyloid-containing clots (so-called microclots) [8]  in  ve-
nous blood from patients with long COVID may be big enough to block capillaries [56], causing a 
local hypoperfusion. However, these amyloid-containing clots were not found inside capillaries, 
but rather in the extracellular matrix, suggesting an alternative role [21]. Amyloid-containing clots 
may exert local cytotoxic effects resulting in endothelial dysfunction [8,56,57], similar to that ob-
served in Alzheimer's disease [58]. The potential link between amyloid-containing clots, endothelial 
dysfunction, hypoperfusion, and local hypoxia is currently unclear. 

Autoimmunity 
There is substantial evidence indicating that autoimmunity may be implicated in long COVID patho-
physiology [2]. However, how autoimmune antibodies found in patients with long COVID may affect 
skeletal muscle, either acutely or chronically, is poorly understood. There is some evidence of autoan-
tibodies for β-adrenergic receptors (β2-ARs) in patients with long COVID [59–61], which are implicated 
in a variety of exercise-related responses. Specifically, β2-AR signaling is implicated in mitochondrial 
biogenesis, and in substrate oxidation and blood flow regulation [62,63]. Autoantibodies in myasthenia 
gravis and myositis – two well-studied autoimmune diseases which also exhibit muscle fatigue and 
worsening of symptoms with exercise [64,65] – are known to be associated with muscle weakness 
and muscle fatigue [66,67]. However, the mechanistic role of autoantibodies in the development of 
skeletal muscle adaptations in long COVID and the development of PEM is unknown. 

Electrophysiological alterations 
Several recent studies indicate that some patients with long COVID exhibit signs of myopathies 
[68,69] with myopathic histopathology [30,68]. Small-fiber neuropathy is common in patients 
with long COVID [37,38]. A recent study in patients with ME/CFS indicated higher tissue sodium 
levels [70], although it is unclear whether this is an intracellular or extracellular sodium accumula-
tion. Sodium affects multiple channels, including the mitochondrial sodium–calcium exchanger, 
which is critical in mitochondrial function. It has been hypothesized that disturbances in muscle 
sodium homeostasis make mitochondria and muscle fibers susceptible to damage [71], which 
is linked to an early fatigue development [72] and altered ion channel function. More studies are 
necessary to fully understand the electrophysiological changes apparent in long COVID. 

Central fatigue 
Various research groups have suggested that central fatigue and neurological alterations contribute to 
long COVID symptoms [73–75], including brain fog, sleep difficulties, anxiety, depression, headaches, 
and somatic pain [76]. Neurophysiological alterations, such as neuro-inflammation and small-fiber neu-
ropathy, likely modulate long COVID symptoms. Central fatigue, defined as a reduction in the central 
nervous system’s capacity to drive skeletal muscle contractions, could play a role in limiting exercise 
tolerance, though the necessary studies involving voluntary activation assessment, transcranial mag-
netic stimulation, and peripheral nerve stimulation have not yet been performed. It is also possible 
that a heightened interleukin (IL)-6-induced perception of effort leads patients to terminate exercise ear-
lier [77]. However, patients with long COVID often exhibit earlier lactate accumulation onset during 
moderate exercise [20,21,78], independently of physical effort and psychological state [23]. Future
Trends in Endocrinology & Metabolism, July 2025, Vol. 36, No. 7 619
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Outstanding questions 
What triggers post-exertional malaise 
(PEM) in patients with long COVID? 

What is the relative contribution of a 
sedentary lifestyle to the skeletal muscle 
alterations seen in patients? 

To what extent is endothelial function 
impaired in patients with long COVID, 
and  does  this  contribute  to  exercis  e
limitation and PEM?

How does long COVID induce small-fiber 
neuropathy and muscle atrophy, and 
what are the long-term consequences? 

Could autoimmunity or amyloid-
containing clots be central to the muscle 
and vascular dysfunction in long COVID? 

Are non-invasive techniques – such as 
qualitative electromyography, near-
infrared spectroscopy, or functional 
magnetic resonance imaging – viable 
alternatives for patient diagnosis and 
monitoring patient progression? 

What non-invasive alternatives are 
available to assess neurophysiological 
and skeletal muscle function in patients 
with long COVID? 

Which medications can increase the 
threshold for post-exertional malaise, 
and how do these treatments alter 
long COVID disease progression? 
studies should include interpolated twitch techniques to fully investigate central fatigue in long COVID 
[79]. Non-invasive methods to assess neurological alterations, using (functional) magnetic resonance 
imaging (MRI), are warranted to further understand the neurological consequences of PEM, as cogni-
tive and mental exertion can also trigger PEM. 

Therapeutic treatments in long COVID 
There are currently no therapies for long COVID; however ongoing clinical trials are promising. 
Recently, immunoadsorption therapy temporarily alleviated long COVID symptoms [61]; how-
ever, further investigations are required. Other recent trials (found on ClinicalTrials.gov)  include  
dietary supplementation (mitoquinone, vitamin K2, vitamin D3, and N-acetylcysteine), anti-
inflammatory or immune regulatory drugs (i.e., lithium, naltrexone, and rintatolimod), and 
some antiviral drugs (e.g., Paxlovid) [80]. The majority of trials are ongoing, and we eagerly 
await new results. 

Concluding remarks and future perspectives 
Most research on long COVID has focused on immune function, but skeletal muscle adaptations 
in these patients are gaining more attention. There is clear evidence of skeletal muscle alterations, 
including mitochondrial and endothelial abnormalities in patients with long COVID that may 
underly whole-body exercise responses. The heterogeneity and the duration of the disease result 
in different skeletal muscle phenotypes, and these deserve further study. Future research should 
also investigate endothelial function, the possible implications of amyloid-containing deposits in 
skeletal muscle, and the underlying pathophysiology of PEM and how it contributes to long 
COVID disease progression (see Outstanding questions). We applaud new studies that investi-
gate the factors contributing towards skeletal muscle adaptations, including deconditioning, hy-
perbaric oxygen therapy, novel medications targeting autoimmunity, and the neurological 
component of PEM. As many new groups worldwide are now studying the fundamental patho-
physiology of long COVID and testing potential new therapies to relieve patient symptoms and 
the disease burden, we await exciting times in this research field. 
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