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Abstract

Background The complement system is an important defense mechanism against pathogens, including viruses. In
COVID-19, evidence suggests that hyperactivation of the complement system can lead to tissue damage and provoke
dysregulation of the coagulation cascade, resulting in vascular damage observed in severe COVID-19. There is still little
evidence regarding the role of plasma levels of these molecules in the clinical evolution of hospitalized patients with
COVID-19.

Methods The study included individuals 18 years of age or older with confirmed diagnosis of COVID-19, admitted
to two referral hospitals in the Northeast Region of Brazil between August 2020 and July 2021. Plasma samples
were collected within 24 hours of hospital admission. Patients were followed up until discharge, and complications
during hospitalization were duly recorded. Plasma levels of the following complement proteins were determined by
Luminex: C2, C3, C3b/iC3b, C4, C4b, C5, C5a, MBL, C1q, factor |, factor D, factor B, and factor H. A multivariate logistic
regression analysis was used to correct the results according to possible confounding factors.

Results The study included 267 patients (134 critical and 133 severe), with mean ages of 54 and 52 years,
respectively. Plasma levels of C2, C5a, factor B, and factor D were significantly higher in patients who required
intensive care unit admission, required ventilatory support, developed sepsis, developed cardiorespiratory arrest, or
developed acute kidney failure. On the other hand, C4b level was lower in patients who developed complications.
Complement proteins were significantly associated with laboratory parameters related to coagulation and kidney
function.

Conclusion These findings show that the complement system is associated with COVID-19 complications and
laboratory parameters of coagulation and kidney function. These results suggest that these molecules may be
potential biomarkers or therapeutic targets in the clinical progression of COVID-19.
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Background

Since the first cases of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection were reported in
December 2019 in Wuhan, China, there has been a sig-
nificant expansion in the number of cases worldwide. As
of May 1, 2023, more than 753 million cases had been
reported worldwide, resulting in more than 6.8 million
deaths [1].

The complement system is an important primary
immune defense mechanism against viruses, consisting
of a proteolysis-based activation cascade composed of
more than forty plasma proteins [2]. The complement
system can be activated through three different path-
ways, the classical (CP), the lectin (LP), and the alter-
native (AP) pathway, all leading to the formation of C3
convertase and, finally, to the formation of the membrane
attack complex (MAC) [3]. After recognizing viruses
or viral particles, this system performs four main func-
tions: lysis of infected cells or enveloped viruses through
the formation of the membrane attack complex (MAC or
C5b-9 complex) [4], direct opsonization of viral particles
[5], solubilization of antibody-virus complexes [6], and
activation of inflammation in the host [7].

Although the main function of the complement system
in viral infections is to protect the host from invading
viruses, complement overactivation also appears to play
a role in the pathogenesis of COVID-19. Indeed, stud-
ies have reported that complement activation was asso-
ciated with greater disease severity, intensive care unit
(ICU) admission, and increased mortality [8—16]. More-
over, clinical trials with C5a-targeted complement inhibi-
tors in the treatment of severe cases of COVID-19 have
shown promising results [17-19]. Recent data indicate
that the functional connection between the complement
system, coagulation cascade, and intrinsic complement
production by lung cells are involved and may, therefore,
be promising new therapeutic targets for disease severity.

Although previous studies have investigated comple-
ment system protein levels in COVID-19, they were
limited to investigating some individual components in
relation to clinical course and susceptibility to infection
in small cohorts. In our study, we investigated the asso-
ciation of the components C2, C3, C3b/iC3b, C4, C4b,
C5, C5a, MBL, Clq, factor I, factor D, factor B, and factor
H with the severity of COVID-19, post-hospitalization
complications, and their relationship with laboratory
parameters.

Methods

Study design, location, and target population

This is a cross-sectional, analytical study with a quantita-
tive approach. Samples were included from individuals of
both sexes, 18 years of age or older, with COVID-19 con-
firmed by molecular (RT-PCR) or immunological testing,
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who were hospitalized between August 2020 and July
2021 at the University Hospital of the Universidade Fed-
eral do Vale do Sdo Francisco (HU-UNIVASF/EBSERH)
and the Field Hospital of the Municipality of Petrolina,
both reference centers for the treatment of COVID-19 in
the Vale do Séo Francisco Region, in the city of Petrolina,
Pernambuco, located in the Northeast Region of Brazil.

Patients were classified as critical when they developed
critical disease, whether pulmonary, with high-flow oxy-
gen therapy, mechanical ventilation (continuous positive
airway pressure, bilevel positive airway pressure, and
intubation), septic shock, or damage to any other organ
that required ICU admission. Patients who developed
pneumonia, required low-flow oxygen, or were admitted
to ward beds were classified as severe.

This study received approval from the Ethics Commit-
tee of the Hospital das Clinicas of the Federal Univer-
sity of Pernambuco (HC/UFPE) under register number
CAAE: 38.196.620.0.0000.8807, and it was conducted in
accordance with the provisions of the Declaration of Hel-
sinki and the Good Clinical Practice guidelines.

Sample collection and processing

Biological Material was collected by the nursing service
within 24 h of patient admission, by means of vacuum
venipuncture in a tube containing EDTA, and subse-
quently sent to the HU/UNIVASF Clinical Research Lab-
oratory (LAMUPE). After receipt, the samples were
processed, separated into blood, serum, and plasma.
They were then stored in refrigerators at — 80 °C until the
plasma was used.

Complement protein quantification

A multiplex assay (Luminex xMAP), based on technology
that uses Magnetic beads, was used to determine plasma
levels, by means of a commercially available MILLIPLEX
MaP Human Complement Panel 1 and 2 kit (Millipore
Corporation, Billerica, MA, USA. Number: HCMP-
1MAG-19 K) following manufacturer instructions. Con-
centrations of complement proteins, including C2, C4b,
C5, C5a, MBL, factor D and factor I (panel 1), Clq, C3,
C3b/iC3b, C4, factor B and factor H (panel 2), were ana-
lyzed on a Luminex 200 system, and median fluorescence
intensity (MFI) was obtained.

Statistical analyses

The Shapiro-Wilk test was used to verify whether vari-
able distribution was normal. Continuous variables were
compared using the Mann-Whitney test. Pearson’s chi-
square test was used for categorical variables. Spearman’s
correlation test was performed to correlate plasma levels
and laboratory parameters. Results were presented using
a heat Map and network analysis, with strength of cor-
relation coefficients displayed on a color scale. To reduce
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the risk of bias, the significant results were adjusted for
possible confounding factors using a multivariate Logis-
tic regression model. Data were stored and analyzed
using JASP 0.18.3 software. Column graphs were con-
structed using GraphPad Prism software, version 9.0.

Results

The study included a total of 267 patients: 134 admitted
to the ICU and classified as critical and 133 admitted to
ward beds and classified as severe. The mean age in the
severe group was 52 years; in the critical group it was
54 years (p=0.38). Male sex was more prevalent in both
groups, 60.9% in the severe group and 57.5% in the criti-
cal group (p=0.57) (Table 1).

In relation to comorbidities, only the occurrence of
obesity was significantly different between the groups,
with a prevalence of 28.3% in the critical group versus
15.1% in the severe group (p=0.009). After hospitaliza-
tion, patients were followed up and assessed for their
progress. The variables, use of invasive ventilation, car-
diopulmonary arrest, sepsis, acute kidney failure, and
death were significantly more prevalent in the critical
group (p<0.0001, for all comparisons). The mean length
of hospital stay was longer in the critical group than in
the severe group (15.0 days versus 5.8 days, p<0.0001)
(Table 1).

Legend — COPD: chronic obstructive pulmonary dis-
ease; SD: standard deviation.

Table 1 Baseline characteristics and clinical evolution of the
patients included in the study

Severe Critical P*

CcoviD-19 CoVID-19

(N=133) (N=134)
Demographic
Age, years (mean+SD) 5244149 541+172 038
Male, n (%) 81(60.9) 77 (57.5) 0.57
Female, n (%) 52 (39.1) 57 (42.5)
Comorbidities
Diabetes mellitus, n (%) 36 (27.2) 49 (36.5) 0.10
Hypertension, n (%) 54 (40.9) 63 (47.0) 0.32
Obesity, n (%) 20(15.1) 38(283) 0.009
Chronic kidney disease, n (%) 2(1.5) 6 (4.4) 0.16
Chronic heart disease, n (%) 3(2.2) 53.7) 0.49
Asthma, n (%) 2(1.5) 7(5.2) 0.09
Cancer, n (%) 1(0.7) 4(2.9) 0.18
COPD, n (%) 1(0.7) 4(29) 0.18
Clinical evolution
Invasive ventilation, n (%) 0 106 (79.1) <0.001
Cardiorespiratory arrest, n (%) 0 35(32.4) <0.001
Sepsis, n (%) 0 26 (20.1) <0.001
Acute kidney injury, n (%) 0 43 (32.8) <0.001
Death, n (%) 0 50(37.3) <0.001
Length of stay, days (mean+SD)  5.8+6.7 150+12.1  <0.001

Page 3 of 14

Complement system protein levels were assessed
from samples collected within 24 h of admission. Criti-
cal patients were observed to have higher plasma lev-
els of C2 (p<0.0001), C5a (p<0.0001), C5a/C5 ratio
(p<0.0001), and factor B (p=0.016) upon admission,
compared to severe patients. On the other hand, lev-
els of C4b (p=0.0309), C4b/C4 ratio (p=0.0138), and
C3b/iC3b (p=0.018) were lower in the group of critical
patients (Fig. 1). After correction using a multivariate
model adjusting for sex, age, and obesity as possible con-
founders, the components C4b (p=0.033), C4b/C4 ratio
(p=0.043), C2 (p=0.031), C5a (p=0.002), C5a/C5 ratio
(p<0.001), and factor B (p=0.034) remained statistically
significant. No significant difference was observed for the
other components.

Regarding the outcome, a significant association was
observed between higher levels of C2 and factor D and
the occurrence of death (p<0.0001, p=0.0016, respec-
tively), while C3 and C3b/iC3b levels were lower in
deaths (p=0.0458, p=0.0488, respectively) (Fig. 2).
After correction, no component remained statistically
significant.

Furthermore, patients who required invasive ventila-
tion during hospitalization were observed to have higher
levels of C2 (p<0.0001), C5a (p<0.0001), C5a/C5 ratio
(p=0.0002), Clq (p=0.0188), and factor B (p=0.0066)
upon admission. The C4b/C4 ratio levels (p=0.0075)
were significantly lower in these patients (Fig. 3). After
correction, the C4b/C4 ratio (p=0.019), C5a (p<0.001),
C5a/C5 ratio (p<0.001) and factor B (p =0.005) remained
significant.

Regarding the occurrence of sepsis during hospitaliza-
tion, higher levels of C2 (p <0.0001), C5a (p =0.0092), and
Clq (p=0.0175) were observed in affected patients. On
the other hand, levels of C3 (p=0.0217) and C3b/iC3b
(p=0.0120) were decreased when compared to patients
who did not develop sepsis (Fig. 4). After correction, no
component remained statistically significant.

Levels of C2 component (p<0.0001) and factor D
(p=0.0060) were significantly higher in patients who
developed cardiorespiratory arrest during hospitaliza-
tion. There was no significant association for the other
components (Fig. 5). After correction, factor D (p=0,019)
remained significant.

When we assessed the relationship between comple-
ment system components and the occurrence of acute
kidney failure during hospitalization, we observed a
significant association between higher levels of C2
(p<0.0001), C5a (p=0.0447), Clq (p=0.0373), and fac-
tor D (p=0.0280). Levels of C4b (p=0.0022) and C4b/
C4 ratio (p=0.0016) were lower in patients who devel-
oped acute kidney failure (Fig. 6). After correction, C4b
(p=0.016), C4b/C4 ratio (p=0.022), C2 (p=0.026) and
Cb5a (p=0.012) remained significant.
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Fig. 1 Association of plasma levels of complement proteins with the severity of COVID-19. Data are shown as median and interquartile range. Statis-
tical significance was determined using Mann-Whitney test. MFI: median fluorescence intensity; ns: not significant. *p<0.05, **p<0.01, ***p <0.001,
®6ep < 0,0001
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Fig. 2 Association of plasma levels of complement proteins with the outcome of COVID-19. Data are shown as median and interquartile range. Sta-
tistical significance was determined using Mann-Whitney test. MFl: median fluorescence intensity; ns: not significant. *p <0.05, **p <0.01, ***p <0.001,
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Fig. 3 Association of plasma levels of complement proteins with the need for invasive ventilatory support in patients with COVID-19. Data are shown as
median and interquartile range. Statistical significance was determined using Mann-Whitney test. MFI: median fluorescence intensity; ns: not significant.
*p<0.05,*p <001, **p<0.001, ***p < 0.0001
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interquartile range. Statistical significance was determined using Mann-Whitney test. MFI: median fluorescence intensity; ns: not significant. *p <0.05,
*5 <001, **p <0001, ****p <0.0001



Andrade de et al. BMC Infectious Diseases

(2

025) 25:1231

ns
300 ns 0.8
150 — ,—‘
a 200 1004 o
g g .
<
5 s S
o < =
100 O 5 O
0 0
Yes No Yes No
ns ns
4000 600 — ,—’ 0.25
3000
= 400 °
£ = s
= 2000 3 ™
P ) Q
= a
© & 200 8
O
1000 —
0 0-
Yes No Yes No
ns ns
20— ,—‘ 15+ ’—‘ 40—
15—
_ o 10 _
: : :
2 10+ ©Q =
© Q o
¢} 0 o
O 05—
5 —
0 0.0
Yes No Yes No
ns ns
5000 — —
’7 6000 4000
4000
o = 4000 .
= 3000 c
[T
z = s
3 p o
D 2000 < 5
& 2000 &
1000
0- 0-
Yes No Yes No

0.6
0.4 —
0.2
0.0-
ns
0.20—
0.15—
0.10+
0.05+
0.00-

ns
3000 —
2000
1000+
0

ns

40

C2 (MFI)

C5 (MFI)

5000 —

Factor D (MFI)
8
S
1

1000

Factor H (MFI)

4000 —|
2000+
1000 —
ns

800 —
600 —
400+
200

0-

Page 8 of 14

*kokk

Fig.5 Association of plasma levels of complement proteins with the occurrence of cardiorespiratory arrest in patients with COVID-19. Data are shown as
median and interquartile range. Statistical significance was determined using Mann-Whitney test. MFI: median fluorescence intensity; ns: not significant.
*p<0.05,*p <001, **p<0.001, ***p < 0.0001
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Fig. 6 Association of plasma levels of complement proteins with the occurrence of acute kidney injury in patients with COVID-19. Data are shown as
median and interquartile range. Statistical significance was determined using Mann-Whitney test. MFI: median fluorescence intensity; ns: not significant.
*p<0.05,*p <001, **p<0.001, ***p < 0.0001
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Platelets

Fig. 7 Network analysis of complement proteins and laboratory parameters in patients hospitalized with COVID-19. Blue lines indicate a positive cor-
relation. Red lines indicate a negative correlation. The thickness of the lines is proportional to the strength of the correlation. ALT: alanine transaminase;
AST: aspartate transaminase; Cr: creatinine; CRP: C-reactive protein; INR: international normalized ratio; MBL: mannose-binding lectin; TBIL: total bilirubin,

WBC: white blood cell

Finally, regarding the strength of correlation coeffi-
cients on network analysis together with the heat map, a
correlation was demonstrated between platelet count and
levels of MBL, C3, C3b, C4, factor B, factor D, and factor
H. In contrast, other coagulation markers such as INR,
prothrombin time, and APTT were inversely correlated
with the proteins C2, C5a, Clq, C4, in addition to factors
B and H. A significant correlation was also observed for

creatinine and urea, which are markers of kidney fail-
ure, with C2, C5, and factor D (Fig. 7 and Supplementary
Fig. 1).

Discussion

Our results suggest that complement proteins play an
important role in the clinical course of COVID-19 in
hospitalized patients. These findings reinforce previous
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evidence found in European populations and bring new
data regarding the dynamics of these proteins and the
risk of complications during hospitalization, including
outcome, risk of invasive ventilatory support, sepsis, kid-
ney failure, and cardiopulmonary arrest.

The complement system plays a complex role in
COVID-19. Previous studies have demonstrated acti-
vation of the complement system by all three pathways
in lung and kidney tissue samples from patients with
COVID-19 [10]. In vitro experiments have shown that
lectin pathway recognition molecules, such as MBL,
FCN-2, and CL-11, bind to SARS-CoV-2 S and N pro-
teins, leading to activation of the lectin pathway and
deposition of C3b and C4b [20]. Genetic polymor-
phisms in the MBL2 gene have also been associated with
COVID-19 severity [21, 22]. Moreover, the spike protein
can directly deregulate the alternative pathway by bind-
ing to heparan sulfate and competing with factor H, a
negative regulator of complement activity [23-25].

Thus, while the complement system plays a crucial
role in combating SARS-CoV-2, especially early in infec-
tion, it may also have a deleterious effect by exacerbating
inflammation and interacting with the coagulation cas-
cade. This can lead to tissue damage, vascular changes,
and thrombosis observed in severe COVID-19 cases [26].
The mechanism driving the transition of the complement
system from protective to harmful remains unclear but
may involve the interplay between local and systemic
complement activation induced by the virus.

In this study, we observed that plasma levels of C2, C5a,
factor B, and factor D were significantly higher in criti-
cal patients, regardless of the severity parameter used,
including ICU admission, invasive ventilatory support,
cardiopulmonary arrest, and kidney failure. Our findings
are consistent with Ma et al. (2021), who also found sig-
nificant associations between levels of C5a, factor D, fac-
tor B, and adverse outcomes in hospitalized COVID-19
patients [27].

Several previous studies have explored the relationship
between complement components and clinical parame-
ters of COVID-19 [28-41]. Although some contradictory
results have been reported—potentially due to differ-
ences in study design, sample size, sample types (serum,
EDTA plasma, citrate), or quantification methods—there
is consistent evidence linking elevated C5a levels to dis-
ease severity. As a potent anaphylatoxin, C5a promotes
the recruitment of neutrophils, monocytes, and other
immune cells, contributing to an uncontrolled inflamma-
tory response characterized by excessive cytokine release,
tissue damage, endothelialitis, and microthrombosis [43].
In line with this, clinical trials using anti-C5a antibodies
have demonstrated improvements in patients outcomes,
including reduced mortality risk [17-19].
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Our results also indicate high levels of factor B and fac-
tor D in severe clinical conditions. Transcriptome analy-
ses have shown that factor B is one of the complement
genes most strongly induced following SARS-CoV-2
infection, and inhibition of factor B significantly reduced
C3a production in vitro [29]. These observations, along
with evidence that SARS-CoV-2 activates the alternative
pathway through interaction with cell surface heparan
sulfate [44], underscore the importance of the alternative
pathway in COVID-19 pathogenesis. Elevated levels of
factor D have also been associated with poor outcomes,
including death [27], and reductions in properdin, a key
alternative pathway regulator, were noted in mechani-
cally ventilated patients [30], reinforcing the alternative
pathway’s critical role [34].

In addition to the alternative pathway, our study
revealed elevated Clq levels in patients requiring inva-
sive ventilatory support, those who developed sepsis, and
those with acute kidney failure. Although this associa-
tion did not remain statistically significant in multivariate
analysis, previous studies, such as Castanha et al. (2022),
reported that Clq levels were significantly elevated in
severe cases and correlated with higher IgG titers, greater
complement activation, and increased disease severity
[36].

Clq, a key initiator of the classical pathway, is activated
by antigen-antibody complexes. The intense inflam-
matory response and immune complex formation in
critically ill patients could stimulate C1q production by
inflammatory cells, potentially explaining the elevated
C2 levels observed in our study. The components C2 and
C4 are consumed during activation of the classical and
lectin pathways, and compensatory hepatic production
may occur to replenish depleted levels. However, find-
ings regarding Clq are conflicting. Alosaimi et al. (2021)
found no significant difference in Clq levels between
critical and mild COVID-19 cases in a small cohort
in Saudi Arabia [31], whereas a British cohort study
observed reduced Clq levels in severe cases [34]. These
discrepancies highlight the need for further research to
clarify the role of C1q in COVID-19 severity.

Interestingly, we found lower plasma C4b levels in
patients who developed severe disease manifestations.
This contrasts with previous reports suggesting that
fragments of activated complement components would
be elevated in severe patients [27-33]. Although the
mechanisms underlying this finding remain speculative,
it is possible that intense complement activation leads to
rapid C4b deposition on viral particles and damaged tis-
sues, thus depleting its free plasma levels. Differences in
severity criteria across studies may also account for this
divergence, and further investigation is warranted to con-
firm these hypotheses.
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Beyond assessing associations between complement
levels and clinical severity, we also performed a network
analysis exploring the interaction between complement
components and routine laboratory tests at admission.
We found significant correlations between complement
proteins and markers of coagulation (platelets, INR, PT
and APTT) as well as kidney function (creatinine, urea).

The correlation between plasma complement activa-
tion and coagulation parameters likely reflects a com-
plex interplay where complement activation, triggered
by SARS-CoV-2, promotes endothelial injury, expres-
sion of procoagulant factors, and direct interaction with
coagulation pathways [26, 45, 46]. This contributes to
the hypercoagulable state and endothelial dysfunction
characteristic of severe COVID-19. Similarly, comple-
ment activation can exacerbate kidney injury via local
deposition of complement components, inflammation,
endothelial damage, and microthrombosis [15, 37, 47],
ultimately leading to impaired renal function.

Our study has several limitations. We did not assess
complement activation in tissue samples, which might
more accurately reflect local complement activity in
response to infection. Nevertheless, the study has impor-
tant strengths, including the enrollment of unvaccinated
patients, a relatively large sample size, and the compre-
hensive analysis of complement components across all
three activation pathways.

Conclusion

Our findings demonstrate, for the first time, that the
complement system is associated with severe clini-
cal outcomes in COVID-19, including the risk of ICU
admission, need for invasive ventilatory support, sepsis,
cardiorespiratory arrest, acute kidney failure, and death.
In addition, we show that complement components cor-
relate with laboratory parameters related to coagulation
and kidney function. Together, these results enhance
the understanding of how plasma complement levels are
linked to clinical and laboratory markers of COVID-19
severity. Our study also suggests that complement pro-
teins may serve as potential biomarkers of disease pro-
gression or as therapeutic targets for the treatment of
COVID-19.

Supplementary Fig. 1. Heat map representing the
degree of correlation between complement proteins
and laboratory parameters in patients hospitalized with
COVID-19. The degree of correlation was accessed using
Spearman’s rank correlation coefficient test. Significance
was considered when p<0.05. ALT: alanine transami-
nase; AST: aspartate transaminase; Cr: creatinine; CRP:
C-reactive protein; INR: international normalized ratio;
MBL: mannose-binding lectin; TBIL: total bilirubin,
WBC: white blood cell.
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