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Introduction: Post-COVID-19 respiratory infection dynamics require updated

epidemiological characterization to inform clinical surveillance and public

health strategy.

Methods:We analyzed 2484 patients with respiratory tract infections (September

2023–February 2024) using comprehensive pathogen screening (29 viral,

bacterial, and atypical targets) and cytokine quantification (12 cytokines).

Results: Overall pathogen detection was 70.73%, with viral and bacterial

identification in 40.42%(1004/2484), 51.45%(1278/2484) of cases respectively,

and co-infections in 31.88% (predominantly Haemophilus influenzae-virus).

Pediatric patients (<18 years) showed significantly higher positivity (74.1% vs.

63.2%, P < 0.05) with viral predominance (41.57% vs. 37.84%), while adults

showed bacterial predominance (57.38% vs. 38.23%). Pneumonia risk exhibited

age-pathogen specificity: Mycoplasma pneumoniae posed the highest risk in

children (41.1% pneumonia rate) versus influenza B in adults (10.2% detection

rate). Retrospective cytokine analysis (pre-pandemic 2018–2019 vs. post-

pandemic 2023–2024) revealed post-pandemic suppression of IL-6 (6.12

vs.3.82 pg/mL) and IL-8 (37.98 vs. 18.35 pg/mL), with resurgence in 2024,

particularly in pediatric and pneumonia cases (P<0.05).

Discussion: Post-pandemic respiratory pathogen epidemiology is characterized

by heightened pediatric susceptibility to viral co-infections, bacterial pathogen

persistence despite control measures, and dysregulated inflammatory responses.

These findings warrant age-stratified diagnostic and surveillance approaches

with adaptive public health strategies to reduce respiratory infection morbidity.
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Introduction

Coronavirus disease (COVID-19), caused by severe acute

respiratory syndrome coronavirus-2 (SARS-CoV-2), is a

respiratory illness primarily affecting the lungs and frequently

leading to severe complications including acute respiratory

distress syndrome, multi-organ failure, septic shock, and

mortality (Haudebourg et al., 2020; Wang et al., 2020; Gu and

Cao, 2021). The pandemic has exerted profound global impacts,

disrupting public health systems, socioeconomic structures, and

daily life through widespread implementation of lockdowns, travel

restrictions, and business closures (Health, 2020). As societies

transition toward coexisting with the virus, understanding the

long-term consequences of pandemic control measures on

respiratory pathogen epidemiology and immune function has

become imperative (Bedford et al., 2020).

COVID-19 has substantially modified global trends in

respiratory infections. Beyond introducing a novel pathogen, the

pandemic has fundamentally altered the epidemiology of existing

respiratory diseases. Seasonal respiratory viruses such as influenza

and respiratory syncytial virus (RSV) exhibited marked fluctuations

in incidence during pre-pandemic, lockdown, and post-lockdown

phases, as demonstrated by longitudinal surveillance in Turkey

(Kara et al., 2024). Concurrently, the pandemic influenced

outcomes of chronic respiratory conditions; while influenza

incidence declined temporarily, tuberculosis-related mortality

increased due to healthcare access barriers, highlighting the

complex interplay between SARS-CoV-2 and other respiratory

pathogens (Jayaraman et al., 2024).

The concept of “immunity debt” has emerged as a critical

concern in assessing the pandemic’s immunological legacy. This

phenomenon, hypothesized to result from reduced microbial

exposure during prolonged non-pharmaceutical interventions

(NPIs), may increase population susceptibility to infections upon

resumption of normal activities. Severe COVID-19 is characterized

by dysregulated inflammatory responses, where host immune

mechanisms contribute to tissue damage rather than pathogen

clearance (Merad et al., 2021). These immunological alterations

may have prolonged clinical implications, as evidenced by

persistent T-cell activation lasting up to 12 months post-infection

and delayed immune recovery in severe cases (Taeschler et al.,

2022). Challenges in maintaining routine vaccination programs,

exemplified by disrupted COVID-19 vaccine rollouts in regions

such as Fiji, further compound risks of attenuated population

immunity (Chand, 2021). Additionally, pandemic-induced

financial strain on healthcare systems may indirectly exacerbate

disease burdens through constrained diagnostic and therapeutic

resources (Guttman-Kenney et al., 2022; Memon et al., 2022).

To address these emerging challenges, we conducted

comprehensive surveillance of respiratory pathogens and cytokine

profiles in Beijing during the 2023–2024 autumn-winter seasons. This

study aimed to characterize post-pandemic shifts in respiratory

infection patterns and evaluate associated immune perturbations

through two complementary approaches: (1) large-scale screening

of 29 respiratory pathogens across 2484 symptomatic patients, and
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(2) comparative analysis of cytokine levels in historical (2018-2019)

and contemporary (2023-2024) cohorts.
Materials and methods

Patient enrollment

The case numbers were collected according to the study aims

(Supplementary Table S1). All cases (aged 1 month–94 years) were

diagnosed with acute respiratory infections (ARIs) or pneumonia

refer to the previous study (Li et al., 2021).To be specific, for

comprehensive respiratory pathogen panel testing, we included

2484 patients presenting with respiratory tract infection (RTI)

symptoms to the emergency department of Peking Union

Medical College Hospital (PUMCH) (during September 2023–

February 2024). Nasopharyngeal swab (NPS) specimens were

collected from all participants and transferred to the clinical

laboratory for comprehensive respiratory pathogen panel testing

before initiating therapeutic interventions.

For cytokine profiling analysis, we retrospectively examined 209

RTI cases with available biospecimens collected during three

distinct epidemiological periods: November 2018–December 2019

(Group 1,n=41), September 2023–February 2024 (Group 2,n=70),

and September 2024–December 2024 (Group 3,n=98). All

specimens were immediately processed within 24 hours of

collection following standardized protocols. The study protocol

received ethical approval from the PUMCH Ethics Committee

(No. I-22PJ860).
Nucleic acid extraction and purification

The NPS were used for nucleic acid extraction by using the

Nucleic Acid Extraction and Purification Kit (Xi ‘an Tianlong

Technology Co., Ltd, Xi’an, China) on GeneRotex 96 Automatic

Nucleic Acid Extraction instrument (Xi ‘an Tianlong Technology

Co., Ltd, Xi’an, China) following producer’s protocols.
PCR amplification

The detection of respiratory pathogens was performed using the

Respiratory Tract Pathogen Nucleic Acid Detection Kit (Coyote

Bioscience, Beijing, China), for the qualitative detection of nucleic

acids from 29 respiratory pathogens, including 14 types of RNA

viruses (Influenza A virus (IFVA), Influenza B virus (IFVB),

Parainfluenza virus type 1 (HPIV1), Parainfluenza virus type 2

(HPIV2), Parainfluenza virus type 3(HPIV3), Parainfluenza virus

type 4 (HPIV4), Coronavirus 229E(HCoV229E), Coronavirus OC43

(HCoVOC43), Coronavirus NL63(HCoVNL63), Coronavirus HKU1

(HCoVHKU1), Respiratory syncytial virus (RSV), Human

metapneumovirus (HMPV), Human Rhinovirus (HRV), Measles

virus (MeV), 2 types of DNA viruses (Human Adenovirus (HAdV),

Human bocavirus (HBoV)), 2 types of atypical pathogens
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(Mycoplasma pneumoniae, Chlamydia pneumoniae), and 11 types of

bacterial species (Group A streptococcus (GAS), Streptococcus

pneumoniae, Haemophilus influenzae, Legionella pneumophila,

Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus

aureus, Moraxella catarrhalis, Escherichia coli, Acinetobacter

baumannii, Bordetella pertussis from nasopharyngeal and

oropharyngeal swab samples. The detection process utilizes PCR

amplification combined with fluorescence probe technology. Specific

primers and fluorescent probes (FAM, VIC, Cy5, Texas Red) targeted

microbial genetic material in eight separate reaction wells. Real-time

fluorescence signals were recorded during amplification on Tianlong

Gentier 96E. For amplification, 7µL nucleic acid extraction was added

into an 18 µL prepared PCR reaction mix. The PCR cycling

conditions included an initial reverse transcription step at 42°C for

5 minutes, followed by denaturation at 95°C for 1 minute, and 45

cycles of amplification (95°C for 5 seconds and 60°C for 30 seconds,

with fluorescence collection). Positive and negative controls were

included in each run to ensure assay validity. Data were analyzed by

monitoring the threshold cycle (Ct) values, with results interpreted

according to predefined quality control parameters.
Detection of multiple cytokines

Cytokine levels were measured using multiple cytokines (12-

items) Detection Kit (Flowcytometry Fluorescence Luminance

Method, Joinstar Biomedical Technology Co,.Ltd., Hangzhou,

China), which is based on double antibody sandwich flow

cytometry and liquid suspension chip technology to detect a

variety of cytokines. The 12 cytokines included interleukin (IL)-

1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, tumor

necrosis factor (TNF)-a,interferon (IFN)-a, and IFN-g. 200µL
NPS samples were measured using the kit following producer’s

protocols. The fluorescent antibody signal is captured, decoded and

clustered by iMatrix 100 system. According to the intensity of the

fluorescent signal, the concentration of each cytokine in the sample

is calculated through the calibration curve.
Statistical analysis

Descriptive statistics for continuous variables are presented as

medians with interquartile ranges (IQR). The Mann–Whitney U-test

was used for comparisons between two groups. Categorical variables

were expressed as % (m/n) and examined using c2/Fisher’s exact test.
P value < 0.05 was considered statistically significant. Statistical

analyses were performed and graphs were plotted using R (4.2.1).
Results

Demographic characteristics

This study encompassed 2484 cases with a relatively balanced sex

distribution (48.11% male, 51.89% female). The cohort was
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predominantly pediatric, with 69.04% (n=1715) of cases in children

(<18 years) and 30.96% (n=769) in adults, reflecting a clear majority

of pediatric cases during the surveillance period. Cases were

temporally distributed across six months (September 2023–February

2024), with peak incidence in October (36.07%) and December

(24.19%). Overall, 85.02% of cases presented as ARI, while 14.98%

were diagnosed with pneumonia (Table 1). Characteristics of patients

involved in this study were presented in Supplementary Table S2.
Test positive rate of different pathogens

Among 2484 patients screened for 29 respiratory pathogens,

70.73%(1757/2484) tested positive for at least one pathogen 2894

pathogens were detected in 2484 cases with viral, bacterial and

atypical pathogens were identified in 40.42%(1004/2484), 51.45%

(1278/2484)cases, respectively (Supplementary Table S3). A

statistically significant age-related difference was observed, with

pediatric cases demonstrating higher overall positivity rates

(74.11%, 1271/1715) compared to adults (63.20%, 486/769)

(Table 1, P<0.05) This disparity was evident across both viral

(41.57% vs. 37.84%) and non-viral pathogens (57.38% vs. 38.23%)

in children versus adults, respectively (P < 0.05, Supplementary

Table S3).

The predominant viral pathogens during the observation period

were IFVA (9.78%, 243/2484), IFVB(7.97%, 198/2484), and HAdV

(6.32%, 157/2484). Among bacterial pathogens, Haemophilus

influenzae (26.28%, 653/2484) and Moraxella catarrhalis (8.90%,

221/2484) demonstrated highest prevalence, while Mycoplasma

pneumoniae (6.76%, 168/2484) predominated among atypical

pathogens. Notably, none of the 2484 cases tested positive for the

three spec ific pathogens , HCoVNL63 , MeV, and L.

pneumophila (Figure 1A).

Age-specific analysis showed peak positivity among school-aged

children (7–12 years: 76.61%, 583/761) and lowest detection rates in

older adults (>60 years: 52.74%, 77/146) (Table 1). Median age of

infection for most pathogens clustered around 10 years, with

notable exceptions being IFVB (median age 26 years, IQR 8-38)

and HCoVOC43 (median age 23 years, IQR 17-45.5) (Figure 1B).

Age-stratified analysis of 29 respiratory pathogens demonstrated

significant variations in detection patterns: both IFVA and IFVB

demonstrated consistently high detection rates across all age

cohorts, with particularly pronounced prevalence among youths

(13–18 years)and adults (19–35 and 36–60 years). Pediatric

populations exhibited significantly higher infection rates for

HPIV(primarily HPIV3 and HPIV4 subtypes) compared to adult

groups (Figure 2A). HMPV demonstrated a bimodal distribution

across age extremes, with elevated rates in both pediatric and elderly

cohorts. Regarding bacterial and atypical pathogens, H. influenzae

maintained high prevalence across all age groups except seniors

(>60 years), while M. catarrhalis showed predilection for younger

pediatric populations. Notably, M. pneumoniae maintained broad

age distribution with significant prevalence among school-aged

children (Figure 2B).
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Pneumonia risk of different pathogens

Pneumonia complications occurred in 372 cases (14.98%,372/

2484), with significant age-related disparity: pediatric patients (<18

years) exhibited lower incidence (10.79%, 185/1715) compared to

adults (24.32%, 187/769; p<0.05) (Table 1). Pathogen-specific

pneumonia risk stratification (Figure 1C) identified M. pneumoniae

as having strongest association (41.1%, 69/168), followed by A.

baumannii (25.0%, 9/36), HRV (22.2%, 24/108), and HMPV (20.8%,

22/106). Within the pneumonia group, a statistically significant

disparity in viral versus non-viral pathogen detection rates was

identified in pediatric patients (P < 0.05)(Supplementary Table S3).

Bacterial and viral etiologies exhibited distinct age-specific

distribution patterns in pneumonia patients (Supplementary

Table S4). M. pneumoniae was identified as the predominant

pathogen in pediatric pneumonia cases, accounting for 33.5% of

identified pathogens, whereas H. influenzae demonstrated higher

prevalence in adult populations, constituting 12.3% of cases.

Respiratory virus detection revealed significant age-related

variations: HRV showed greater frequency in pediatric cases
Frontiers in Cellular and Infection Microbiology 04
(10.3%) compared to adult cases (2.7%). Conversely, IFVB

exhibited an inverse distribution pattern, being detected in 10.2%

of adult patients versus 2.2% of pediatric cases.
Co-infection patterns of respiratory
pathogens

Among the cohort, 38.85% (965/2484) tested positive for a

single pathogen, 31.88%(792/2484) for multiple pathogens

(Supplementary Table S5, P<0.05). Pediatric populations

demonstrated significantly higher co-infection prevalence

compared to adults (37.26% vs. 19.90%, P < 0.05), with peak co-

infection rates observed in school-aged children (7–18 years:

37.39%, 341/912) compared to the lowest rates in elderly adults

(>60 years: 17.81%, 26/146) (Supplementary Table S5).

Network analysis revealed distinct age-specific co-infection

patterns. H. influenzae occupied a central hub in the interaction

network, with 66.0% (431/653)of its cases involving co-

infections.(Figure 3A). Pediatric cases predominantly featured H.
TABLE 1 Positive detection ratios of patients in this study.

Characteristic
Positive detection rate (%)

(N=2484)
P value

Pneumonia (%)
(N=2484)

Non-Pneumonia (%)
(N=2484)

P Value

All 70.73 (1757/2484) 14.98 (372/2484) 85.02 (2112/2484)

Gender

Male 72.47 (866/1195)
P<0.05

15.56 (186/1195) 84.44 (1009/1195)
P>0.05

Female 69.12 (891/1289) 14.43 (186/1289) 85.57 (1103/1289)

Age (years old)

Children 74.11 (1271/1715)

P<0.05

10.79 (185/1715) 89.21 (1530/1715)

P<0.05

<1 71.9 (110/153) 9.15 (14/153) 90.85 (139/153)

1-3 68.49 (150/219) 6.85 (15/219) 93.15 (204/219)

4-6 73.32 (316/431) 8.82 (38/431) 91.18 (393/431)

7-12 76.61 (583/761) 11.83 (90/761) 88.17 (671/761)

13-18 74.17 (112/151) 18.54 (28/151) 81.46 (123/151)

Adults 63.20 (486/769) 24.32 (187/769) 75.68 (582/769)

19-35 65.38 (187/286) 12.24 (35/286) 87.76 (251/286)

36-60 65.88 (222/337) 22.26 (75/337) 77.74 (262/337)

>60 52.74 (77/146) 52.74 (77/146) 47.26 (69/146)

Months

September, 2023 54.79 (103/188)

P<0.05

26.06 (49/188) 73.04 (139/188)

P<0.05

October,2023 70.31 (630/896) 12.28 (110/896) 87.72 (786/896)

November,2023 75.69 (218/288) 11.46 (33/288) 88.54 (255/288)

December,2023 73.88 (444/601) 14.81 (89/601) 75.2 (512/601)

January,2024 74.14 (258/348) 16.95 (59/348) 83.05 (289/348)

February,2024 63.8 (104/163) 19.63 (32/163) 80.37 (131/163)
P-values were calculated by Mann-Whitney U-test and c2 test.
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influenzae with HAdV, IFVA or M. pneumoniae, while adult cases

showed higher prevalence of H. influenzae-IFVB, H. influenzae-

IFVA and S. pneumoniae-IFVB combinations (Figures 3B, C).

Several pathogen pairs demonstrated statistically significant

correlations: M. pneumoniae significantly co-occurred with HRV

(43.52% co-occurrence vs. 5.09% without HRV; P < 0.001), while K.

pneumoniae-E. coli and S. pneumoniae-IFVB combinations also

showed significant associations (P < 0.05, Figure 3D). High-

frequency co-infection combinations (prevalence >1%) peaked in

children around 10 years of age (Figure 3E).

While co-infection status did not elevate pneumonia risk overall,

specific combinations significantly increased fever incidence. Co-

infection with IFVB and S. pneumoniae (median age 12 years)

resulted in markedly elevated fever ratio (81.5%) compared to
Frontiers in Cellular and Infection Microbiology 05
single infections with IFVB alone (57.3%, median age 32 years) or

S. pneumoniae alone (60.7%, median age 34 years; P < 0.05). Similar

trends were observed for IFVA and M. catarrhalis co-infections.
Pattern of month-specific positivity rates

Temporal trends revealed fluctuating testing positive rate(TPR)

throughout the surveillance period, commencing at 54.79% (103/

188) in September 2023. Positivity rates escalated to >70% during

October 2023–January 2024, before decreasing to 63.8% (104/163)

by February 2024 (Table 1).

Pathogen-specific temporal patterns demonstrated distinct

epidemiological trajectories. IFVA, HAdV, RSV, and HMPV
FIGURE 1

Positive number, median age and pneumonia risk of different pathogens. (A) Positive number for viruses on the left and bacteria on the right.
(B) Age distribution of infections, with virus cases shown on the left and bacterial cases on the right. (C) Risk of pneumonia from different pathogens,
Percentage data for viruses is shown on the left, and for bacteria on the right.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1634415
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2025.1634415
exhibited progressive increases from September baseline levels,

while HRV maintained stable detection rates throughout the

surveillance period. Notably, IFVA detection peaked in December

2023 (17.46%) before sharply declining to 2.3% by January 2024.

Conversely, IFVB showed an inverse pattern, rising from December

2023 to peak at 30.17% in January 2024 (Figure 4A). Among

bacterial pathogens, H. influenzae remained persistently elevated

across all surveillance months. M. catarrhalis, K. pneumoniae, and

E. coli showed transient elevations during October-November

before declining to baseline levels from December onward. In

contrast, S. pneumoniae detection rates increased substantially

during December compared to preceding months (Figure 4B).
Detection of multiple cytokines

To characterize post-pandemic immune responses to respiratory

pathogens, we analyzed cytokine profiles in nasopharyngeal swab

(NPS) samples across three epidemiological cohorts. Multiplex
Frontiers in Cellular and Infection Microbiology 06
cytokine analysis revealed significant intergroup variations

specifically in IL-6, IL-8, and IL-1b levels. Group 2 demonstrated

markedly reduced cytokine concentrations compared to both Group

1 and Group 3, particularly evident in IL-6 (Group 2: 3.82 [3.59-5.73]

pg/mL vs Group 1: 6.12 [3.95-12.32] pg/mL vs Group 3: 4.60 [3.71-

21.40] pg/mL) and IL-8 levels (Group 2: 18.35 [15.38-26.68] pg/mL vs

Group 1: 37.98 [17.41-56.11] pg/mL vs Group 3: 34.7 [17.38-141.48]

pg/mL) (Figure 5A). Subgroup analysis revealed more pronounced

cytokine level alterations in pediatric patients compared to adults

across all study groups (Figure 5B). Similarly, pneumonia patients

exhibited enhanced cytokine responses relative to non-pneumonia

cases, mirroring the age-related response patterns (Figure 5C).
Discussion

This study examines shifts in viral, bacterial, and atypical

pathogen distribution following the COVID-19 pandemic, with
FIGURE 2

Test positive rate of pathogens in different age group. (A) The positive rate of the virus among different age groups. (B) The positive rate of bacterial
infection among different age groups.
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FIGURE 3

Coinfection pattern and interactions of pathogens in patients with ARIs and pneumonia in Beijing from 2023 September to 2024 February.
Coinfection rates were calculated pairwise. For pathogen ‘X’ and ‘Y’, numerator was the number of patients coinfected both ‘X’ and ‘Y’ and the
denominator where the total number of patients who were both tested ‘X’ and ‘Y’. (A) Interaction network analysis of pathogens; (B) Children’s
pattern; (C) Adults’ pattern; (D) Pathogen combinations with significant interaction; (E) High-frequency combinations of co-occurrence patterns and
their clinical implications.
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focus on etiological characteristics and immune system responses.

Post-pandemic viral infection incidence reached 40.42%, exceeding

pre-pandemic rates of 29.8%-39.3% (Yu et al., 2018; Haixu et al.,

2020; Li et al., 2021), consistent with data from September-

November 2023 (Gong et al., 2024). In contrast, pneumonia

incidence declined to 14.98%, below the pre-pandemic rate of

33.87% (Li et al., 2021).IFVA, IFVB, HAdV, HRV, HMPV, and

RSV were most frequently identified. IFVA and IFVB showed

particularly elevated prevalence across adult and pediatric

populations, in both pneumonia and non-pneumonia cases,

surpassing pre-pandemic levels (Li et al., 2021). HAdV and RSV

remained substantial contributors to childhood infections.

Unexpectedly, HRV and HMPV, traditionally associated with

upper respiratory infections, emerged as predominant pneumonia

pathogens, exceeding IFV prevalence. HPIV4 showed increased

prevalence in pediatric pneumonia cases, reflecting its stronger

association with lower respiratory involvement compared to other

HPIV types (Oh et al., 2021).These findings indicate an altered

epidemiological landscape in the post-pandemic era, suggesting the

COVID-19 pandemic modified population susceptibility or

transmission dynamics of respiratory pathogens.

Epidemiological evidence indicates positive associations among

M. catarrhalis, H. influenzae and S. pneumoniae, likely mediated by

shared ecological niches, crowding conditions, and concurrent
Frontiers in Cellular and Infection Microbiology 08
respiratory viral infections (van den Bergh et al., 2012; de

Steenhuijsen Piters et al., 2015). During viral respiratory

infections in children, nasopharyngeal bacterial colonization

density increases significantly, potentially exacerbating ARI

(Howard et al., 2019). H. influenzae detection exceeded 30% in

our cohort, substantially higher than reported colonization rates

(~17% in general populations and ~21% in healthy Chinese

children) (Yang et al., 2019) (Ma et al., 2023).Conversely, S.

pneumoniae showed an inverse age pattern: lower detection in

children contrasting with previous Chinese data (21.4% (95% CI:

18.3–24.4%)) (Marking et al., 2025).COVID-19 has profoundly

altered the nasopharyngeal microbiome, inducing dysbiosis

associated with increased susceptibility to secondary infections

and altered disease severity (Ren et al., 2021). M. pneumoniae,

which exhibits epidemic cycles of 1–3 years (Beeton et al., 2020),

showed increased detection in children during the post-pandemic

period, particularly in school-age groups. This increase likely

reflects resumed social activities and school attendance following

pandemic restrictions. Co-infections of H. influenzae with

respiratory viruses and M. pneumoniae with viruses were more

prevalent, suggesting microbial community imbalance may

facilitate bacterial-viral synergy. Our study reveals the complexity

of nasopharyngeal microbial interactions in respiratory tract

infections, demonstrating pathogen co-occurrence patterns and

their clinical implications. Future investigation should elucidate

mechanistic drivers of bacterial-viral pathogen synergy to inform

therapeutic strategies.

During the COVID-19 pandemic, NPIs—includingmask-wearing

and social distancing—effectively reduced viral transmission but

simultaneously diminished population-level exposure to other

pathogens, thereby attenuating the “training” of adaptive immune

responses (Flaxman et al., 2020; Lai et al., 2020; Brauner et al., 2021).

The upper respiratory tract (URT), as the primary interface for

pathogen encounter, relies on robust mucosal immune responses for

early control of respiratory infections (Zhou et al., 2025). Several

cytokines reflect local mucosal immune responses rather than

systemic responses (Smith et al., 2021; Roubidoux et al., 2023). Most

notably, IL-6 and IL-8 levels decreased significantly in 2023 compared

to the pre-pandemic period (before 2020) and 2024, likely reflecting

adaptive immune system remodeling following pandemic-related

immune suppression. However, comorbidities (Farheen et al., 2021),

vaccination status, and prior SARS-CoV-2 exposure (Padilla-Bórquez

et al., 2024) can also modulate cytokine production. Hence, the

suppression of the cytokines may be influenced by these potential

cofounders. Cytokine profiles differed substantially between children

and adults. Children demonstrated higher mucosal cytokine levels in

the post-pandemic period, consistent with more robust immune

activation. This elevated response likely reflects their relatively naive

immune systems and ongoing immune maturation, in contrast to the

more regulated responses observed in adults. Understanding temporal

and age-specific variations in mucosal immune responses is essential

for developing targeted therapeutic interventions and optimizing

patient outcomes in respiratory tract infections.

The primary limitations encompass single-center study design,

selection bias, inadequate adjustment for confounding factors, small
FIGURE 4

Test positive rate of pathogens by months. (A) The positive rate of
virus tests for each month. (B) The positive rate of bacterial tests for
each month.
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sample sizes in cytokine analysis, lack of temporal comparability

between pre- and post-pandemic cohorts, and incomplete clinical

data. These factors constrain the generalizability of findings and limit

causal inference capacity, necessitating improvements in future research.

In summary, this study reveals distinct patterns in respiratory

pathogen epidemiology and immune responses across pediatric and
Frontiers in Cellular and Infection Microbiology 09
adult populations in the post-pandemic period. Cytokine alterations

identified in our analysis provide mechanistic explanations for age-

dependent differences in infection rates and severity. These findings

underscore the need for age-stratified surveillance systems and

targeted therapeutic strategies to optimize respiratory infection

prevention and treatment across diverse populations.
FIGURE 5

IL-8, IL-6, and IL-1b comparison of NPS of patients with ARIs and pneumonia in Beijing in one period of pre-pandemic and two periods of post-
pandemic. (A) Cytokine concentrations in different stages. (B) Cytokine concentrations in pediatric and adult patients. (C) Cytokine concentrations in
patients with pneumonia and non-pneumonia.
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