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Introduction: Post-COVID-19 respiratory infection dynamics require updated
epidemiological characterization to inform clinical surveillance and public
health strategy.

Methods: We analyzed 2484 patients with respiratory tract infections (September
2023—-February 2024) using comprehensive pathogen screening (29 viral,
bacterial, and atypical targets) and cytokine quantification (12 cytokines).
Results: Overall pathogen detection was 70.73%, with viral and bacterial
identification in 40.42%(1004/2484), 51.45%(1278/2484) of cases respectively,
and co-infections in 31.88% (predominantly Haemophilus influenzae-virus).
Pediatric patients (<18 years) showed significantly higher positivity (74.1% vs.
63.2%, P < 0.05) with viral predominance (41.57% vs. 37.84%), while adults
showed bacterial predominance (57.38% vs. 38.23%). Pneumonia risk exhibited
age-pathogen specificity: Mycoplasma pneumoniae posed the highest risk in
children (41.1% pneumonia rate) versus influenza B in adults (10.2% detection
rate). Retrospective cytokine analysis (pre-pandemic 2018-2019 vs. post-
pandemic 2023-2024) revealed post-pandemic suppression of IL-6 (6.12
vs.3.82 pg/mL) and IL-8 (37.98 vs. 18.35 pg/mL), with resurgence in 2024,
particularly in pediatric and pneumonia cases (P<0.05).

Discussion: Post-pandemic respiratory pathogen epidemiology is characterized
by heightened pediatric susceptibility to viral co-infections, bacterial pathogen
persistence despite control measures, and dysregulated inflammatory responses.
These findings warrant age-stratified diagnostic and surveillance approaches
with adaptive public health strategies to reduce respiratory infection morbidity.
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Introduction

Coronavirus disease (COVID-19), caused by severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2), is a
respiratory illness primarily affecting the lungs and frequently
leading to severe complications including acute respiratory
distress syndrome, multi-organ failure, septic shock, and
mortality (Haudebourg et al., 2020; Wang et al., 2020; Gu and
Cao, 2021). The pandemic has exerted profound global impacts,
disrupting public health systems, socioeconomic structures, and
daily life through widespread implementation of lockdowns, travel
restrictions, and business closures (Health, 2020). As societies
transition toward coexisting with the virus, understanding the
long-term consequences of pandemic control measures on
respiratory pathogen epidemiology and immune function has
become imperative (Bedford et al., 2020).

COVID-19 has substantially modified global trends in
respiratory infections. Beyond introducing a novel pathogen, the
pandemic has fundamentally altered the epidemiology of existing
respiratory diseases. Seasonal respiratory viruses such as influenza
and respiratory syncytial virus (RSV) exhibited marked fluctuations
in incidence during pre-pandemic, lockdown, and post-lockdown
phases, as demonstrated by longitudinal surveillance in Turkey
(Kara et al., 2024). Concurrently, the pandemic influenced
outcomes of chronic respiratory conditions; while influenza
incidence declined temporarily, tuberculosis-related mortality
increased due to healthcare access barriers, highlighting the
complex interplay between SARS-CoV-2 and other respiratory
pathogens (Jayaraman et al., 2024).

The concept of “immunity debt” has emerged as a critical
concern in assessing the pandemic’s immunological legacy. This
phenomenon, hypothesized to result from reduced microbial
exposure during prolonged non-pharmaceutical interventions
(NPIs), may increase population susceptibility to infections upon
resumption of normal activities. Severe COVID-19 is characterized
by dysregulated inflammatory responses, where host immune
mechanisms contribute to tissue damage rather than pathogen
clearance (Merad et al., 2021). These immunological alterations
may have prolonged clinical implications, as evidenced by
persistent T-cell activation lasting up to 12 months post-infection
and delayed immune recovery in severe cases (Taeschler et al.,
2022). Challenges in maintaining routine vaccination programs,
exemplified by disrupted COVID-19 vaccine rollouts in regions
such as Fiji, further compound risks of attenuated population
immunity (Chand, 2021). Additionally, pandemic-induced
financial strain on healthcare systems may indirectly exacerbate
disease burdens through constrained diagnostic and therapeutic
resources (Guttman-Kenney et al., 2022; Memon et al., 2022).

To address these emerging challenges, we conducted
comprehensive surveillance of respiratory pathogens and cytokine
profiles in Beijing during the 2023-2024 autumn-winter seasons. This
study aimed to characterize post-pandemic shifts in respiratory
infection patterns and evaluate associated immune perturbations
through two complementary approaches: (1) large-scale screening
of 29 respiratory pathogens across 2484 symptomatic patients, and
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(2) comparative analysis of cytokine levels in historical (2018-2019)
and contemporary (2023-2024) cohorts.

Materials and methods
Patient enrollment

The case numbers were collected according to the study aims
(Supplementary Table S1). All cases (aged 1 month-94 years) were
diagnosed with acute respiratory infections (ARIs) or pneumonia
refer to the previous study (Li et al., 2021).To be specific, for
comprehensive respiratory pathogen panel testing, we included
2484 patients presenting with respiratory tract infection (RTI)
symptoms to the emergency department of Peking Union
Medical College Hospital (PUMCH) (during September 2023-
February 2024). Nasopharyngeal swab (NPS) specimens were
collected from all participants and transferred to the clinical
laboratory for comprehensive respiratory pathogen panel testing
before initiating therapeutic interventions.

For cytokine profiling analysis, we retrospectively examined 209
RTI cases with available biospecimens collected during three
distinct epidemiological periods: November 2018-December 2019
(Group 1,n=41), September 2023-February 2024 (Group 2,n=70),
and September 2024-December 2024 (Group 3,n=98). All
specimens were immediately processed within 24 hours of
collection following standardized protocols. The study protocol
received ethical approval from the PUMCH Ethics Committee
(No. I-22PJ860).

Nucleic acid extraction and purification

The NPS were used for nucleic acid extraction by using the
Nucleic Acid Extraction and Purification Kit (Xi ‘an Tianlong
Technology Co., Ltd, Xi’an, China) on GeneRotex 96 Automatic
Nucleic Acid Extraction instrument (Xi ‘an Tianlong Technology
Co., Ltd, Xi’an, China) following producer’s protocols.

PCR amplification

The detection of respiratory pathogens was performed using the
Respiratory Tract Pathogen Nucleic Acid Detection Kit (Coyote
Bioscience, Beijing, China), for the qualitative detection of nucleic
acids from 29 respiratory pathogens, including 14 types of RNA
viruses (Influenza A virus (IFVA), Influenza B virus (IFVB),
Parainfluenza virus type 1 (HPIV1), Parainfluenza virus type 2
(HPIV2), Parainfluenza virus type 3(HPIV3), Parainfluenza virus
type 4 (HPIV4), Coronavirus 229E(HCoV229E), Coronavirus OC43
(HCoVOC43), Coronavirus NL63(HCoVNL63), Coronavirus HKU1
(HCoVHKUL1), Respiratory syncytial virus (RSV), Human
metapneumovirus (HMPV), Human Rhinovirus (HRV), Measles
virus (MeV), 2 types of DNA viruses (Human Adenovirus (HAdV),
Human bocavirus (HBoV)), 2 types of atypical pathogens
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(Mycoplasma pneumoniae, Chlamydia pneumoniae), and 11 types of
bacterial species (Group A streptococcus (GAS), Streptococcus
pneumoniae, Haemophilus influenzae, Legionella pneumophila,
Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus
aureus, Moraxella catarrhalis, Escherichia coli, Acinetobacter
baumannii, Bordetella pertussis from nasopharyngeal and
oropharyngeal swab samples. The detection process utilizes PCR
amplification combined with fluorescence probe technology. Specific
primers and fluorescent probes (FAM, VIC, Cy5, Texas Red) targeted
microbial genetic material in eight separate reaction wells. Real-time
fluorescence signals were recorded during amplification on Tianlong
Gentier 96E. For amplification, 7pL nucleic acid extraction was added
into an 18 pL prepared PCR reaction mix. The PCR cycling
conditions included an initial reverse transcription step at 42°C for
5 minutes, followed by denaturation at 95°C for 1 minute, and 45
cycles of amplification (95°C for 5 seconds and 60°C for 30 seconds,
with fluorescence collection). Positive and negative controls were
included in each run to ensure assay validity. Data were analyzed by
monitoring the threshold cycle (Ct) values, with results interpreted
according to predefined quality control parameters.

Detection of multiple cytokines

Cytokine levels were measured using multiple cytokines (12-
items) Detection Kit (Flowcytometry Fluorescence Luminance
Method, Joinstar Biomedical Technology Co,.Ltd., Hangzhou,
China), which is based on double antibody sandwich flow
cytometry and liquid suspension chip technology to detect a
variety of cytokines. The 12 cytokines included interleukin (IL)-
1B, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, tumor
necrosis factor (TNF)-ainterferon (IFN)-o, and IFN-y. 200pL
NPS samples were measured using the kit following producer’s
protocols. The fluorescent antibody signal is captured, decoded and
clustered by iMatrix 100 system. According to the intensity of the
fluorescent signal, the concentration of each cytokine in the sample
is calculated through the calibration curve.

Statistical analysis

Descriptive statistics for continuous variables are presented as
medians with interquartile ranges (IQR). The Mann-Whitney U-test
was used for comparisons between two groups. Categorical variables
were expressed as % (m/n) and examined using 2/Fisher’s exact test.
P value < 0.05 was considered statistically significant. Statistical
analyses were performed and graphs were plotted using R (4.2.1).

Results
Demographic characteristics

This study encompassed 2484 cases with a relatively balanced sex
distribution (48.11% male, 51.89% female). The cohort was
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predominantly pediatric, with 69.04% (n=1715) of cases in children
(<18 years) and 30.96% (n=769) in adults, reflecting a clear majority
of pediatric cases during the surveillance period. Cases were
temporally distributed across six months (September 2023-February
2024), with peak incidence in October (36.07%) and December
(24.19%). Overall, 85.02% of cases presented as ARI, while 14.98%
were diagnosed with pneumonia (Table 1). Characteristics of patients
involved in this study were presented in Supplementary Table S2.

Test positive rate of different pathogens

Among 2484 patients screened for 29 respiratory pathogens,
70.73%(1757/2484) tested positive for at least one pathogen 2894
pathogens were detected in 2484 cases with viral, bacterial and
atypical pathogens were identified in 40.42%(1004/2484), 51.45%
(1278/2484)cases, respectively (Supplementary Table S3). A
statistically significant age-related difterence was observed, with
pediatric cases demonstrating higher overall positivity rates
(74.11%, 1271/1715) compared to adults (63.20%, 486/769)
(Table 1, P<0.05) This disparity was evident across both viral
(41.57% vs. 37.84%) and non-viral pathogens (57.38% vs. 38.23%)
in children versus adults, respectively (P < 0.05, Supplementary
Table S3).

The predominant viral pathogens during the observation period
were IFVA (9.78%, 243/2484), IFVB(7.97%, 198/2484), and HAdV
(6.32%, 157/2484). Among bacterial pathogens, Haemophilus
influenzae (26.28%, 653/2484) and Moraxella catarrhalis (8.90%,
221/2484) demonstrated highest prevalence, while Mycoplasma
pneumoniae (6.76%, 168/2484) predominated among atypical
pathogens. Notably, none of the 2484 cases tested positive for the
three specific pathogens, HCoVNL63, MeV, and L.
pneumophila (Figure 1A).

Age-specific analysis showed peak positivity among school-aged
children (7-12 years: 76.61%, 583/761) and lowest detection rates in
older adults (>60 years: 52.74%, 77/146) (Table 1). Median age of
infection for most pathogens clustered around 10 years, with
notable exceptions being IFVB (median age 26 years, IQR 8-38)
and HCoVOC43 (median age 23 years, IQR 17-45.5) (Figure 1B).
Age-stratified analysis of 29 respiratory pathogens demonstrated
significant variations in detection patterns: both IFVA and IFVB
demonstrated consistently high detection rates across all age
cohorts, with particularly pronounced prevalence among youths
(13-18 years)and adults (19-35 and 36-60 years). Pediatric
populations exhibited significantly higher infection rates for
HPIV (primarily HPIV3 and HPIV4 subtypes) compared to adult
groups (Figure 2A). HMPV demonstrated a bimodal distribution
across age extremes, with elevated rates in both pediatric and elderly
cohorts. Regarding bacterial and atypical pathogens, H. influenzae
maintained high prevalence across all age groups except seniors
(>60 years), while M. catarrhalis showed predilection for younger
pediatric populations. Notably, M. pneumoniae maintained broad
age distribution with significant prevalence among school-aged
children (Figure 2B).
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TABLE 1 Positive detection ratios of patients in this study.

Positive detection rate (%)

10.3389/fcimb.2025.1634415

Pneumonia (%) Non-Pneumonia (%)

Characteristic (N=2484) P value (N=2484) (N=2484) P Value
All 70.73 (1757/2484) 14.98 (372/2484) 85.02 (2112/2484)
Gender
Male 72.47 (866/1195) 15.56 (186/1195) 84.44 (1009/1195)
P<0.05 P>0.05
Female 69.12 (891/1289) 14.43 (186/1289) 85.57 (1103/1289)
Age (years old)
Children 74.11 (1271/1715) 10.79 (185/1715) 89.21 (1530/1715)
<1 71.9 (110/153) 9.15 (14/153) 90.85 (139/153)
1-3 68.49 (150/219) 6.85 (15/219) 93.15 (204/219)
4-6 73.32 (316/431) 8.82 (38/431) 91.18 (393/431)
7-12 76.61 (583/761) 11.83 (90/761) 88.17 (671/761)
P<0.05 P<0.05
13-18 74.17 (112/151) 18.54 (28/151) 81.46 (123/151)
Adults 63.20 (486/769) 24.32 (187/769) 75.68 (582/769)
19-35 65.38 (187/286) 12.24 (35/286) 87.76 (251/286)
36-60 65.88 (222/337) 22.26 (75/337) 77.74 (262/337)
>60 52.74 (77/146) 52.74 (77/146) 47.26 (69/146)
Months
September, 2023 54.79 (103/188) 26.06 (49/188) 73.04 (139/188)
October,2023 7031 (630/896) 12.28 (110/896) 87.72 (786/896)
November,2023 75.69 (218/288) 11.46 (33/288) 88.54 (255/288)
P<0.05 P<0.05
December,2023 73.88 (444/601) 14.81 (89/601) 75.2 (512/601)
January,2024 74.14 (258/348) 16.95 (59/348) 83.05 (289/348)
February,2024 63.8 (104/163) 19.63 (32/163) 80.37 (131/163)

P-values were calculated by Mann-Whitney U-test and %2 test.

Pneumonia risk of different pathogens

Pneumonia complications occurred in 372 cases (14.98%,372/
2484), with significant age-related disparity: pediatric patients (<18
years) exhibited lower incidence (10.79%, 185/1715) compared to
adults (24.32%, 187/769; p<0.05) (Table 1). Pathogen-specific
pneumonia risk stratification (Figure 1C) identified M. pneumoniae
as having strongest association (41.1%, 69/168), followed by A.
baumannii (25.0%, 9/36), HRV (22.2%, 24/108), and HMPV (20.8%,
22/106). Within the pneumonia group, a statistically significant
disparity in viral versus non-viral pathogen detection rates was
identified in pediatric patients (P < 0.05)(Supplementary Table S3).

Bacterial and viral etiologies exhibited distinct age-specific
distribution patterns in pneumonia patients (Supplementary
Table S4). M. pneumoniae was identified as the predominant
pathogen in pediatric pneumonia cases, accounting for 33.5% of
identified pathogens, whereas H. influenzae demonstrated higher
prevalence in adult populations, constituting 12.3% of cases.
Respiratory virus detection revealed significant age-related
variations: HRV showed greater frequency in pediatric cases
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(10.3%) compared to adult cases (2.7%). Conversely, IFVB
exhibited an inverse distribution pattern, being detected in 10.2%
of adult patients versus 2.2% of pediatric cases.

Co-infection patterns of respiratory
pathogens

Among the cohort, 38.85% (965/2484) tested positive for a
single pathogen, 31.88%(792/2484) for multiple pathogens
(Supplementary Table S5, P<0.05). Pediatric populations
demonstrated significantly higher co-infection prevalence
compared to adults (37.26% vs. 19.90%, P < 0.05), with peak co-
infection rates observed in school-aged children (7-18 years:
37.39%, 341/912) compared to the lowest rates in elderly adults
(>60 years: 17.81%, 26/146) (Supplementary Table S5).

Network analysis revealed distinct age-specific co-infection
patterns. H. influenzae occupied a central hub in the interaction
network, with 66.0% (431/653)of its cases involving co-
infections.(Figure 3A). Pediatric cases predominantly featured H.
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FIGURE 1
Positive number, median age and pneumonia risk of different pathogens. (A) Positive number for viruses on the left and bacteria on the right.
(B) Age distribution of infections, with virus cases shown on the left and bacterial cases on the right. (C) Risk of pneumonia from different pathogens,
Percentage data for viruses is shown on the left, and for bacteria on the right.

influenzae with HAAV, IFVA or M. pneumoniae, while adult cases
showed higher prevalence of H. influenzae-IFVB, H. influenzae-
IFVA and S. pneumoniae-IFVB combinations (Figures 3B, C).
Several pathogen pairs demonstrated statistically significant
correlations: M. pneumoniae significantly co-occurred with HRV
(43.52% co-occurrence vs. 5.09% without HRV; P < 0.001), while K.
pneumoniae-E. coli and S. pneumoniae-IFVB combinations also
showed significant associations (P < 0.05, Figure 3D). High-
frequency co-infection combinations (prevalence >1%) peaked in
children around 10 years of age (Figure 3E).

While co-infection status did not elevate pneumonia risk overall,
specific combinations significantly increased fever incidence. Co-
infection with IFVB and S. pneumoniae (median age 12 years)
resulted in markedly elevated fever ratio (81.5%) compared to
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single infections with IFVB alone (57.3%, median age 32 years) or
S. pneumoniae alone (60.7%, median age 34 years; P < 0.05). Similar
trends were observed for IFVA and M. catarrhalis co-infections.

Pattern of month-specific positivity rates

Temporal trends revealed fluctuating testing positive rate(TPR)
throughout the surveillance period, commencing at 54.79% (103/
188) in September 2023. Positivity rates escalated to >70% during
October 2023-January 2024, before decreasing to 63.8% (104/163)
by February 2024 (Table 1).

Pathogen-specific temporal patterns demonstrated distinct
epidemiological trajectories. IFVA, HAdV, RSV, and HMPV
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exhibited progressive increases from September baseline levels,
while HRV maintained stable detection rates throughout the
surveillance period. Notably, IFVA detection peaked in December
2023 (17.46%) before sharply declining to 2.3% by January 2024.
Conversely, IFVB showed an inverse pattern, rising from December
2023 to peak at 30.17% in January 2024 (Figure 4A). Among
bacterial pathogens, H. influenzae remained persistently elevated
across all surveillance months. M. catarrhalis, K. pneumoniae, and
E. coli showed transient elevations during October-November
before declining to baseline levels from December onward. In
contrast, S. pneumoniae detection rates increased substantially
during December compared to preceding months (Figure 4B).

Detection of multiple cytokines

To characterize post-pandemic immune responses to respiratory
pathogens, we analyzed cytokine profiles in nasopharyngeal swab
(NPS) samples across three epidemiological cohorts. Multiplex
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cytokine analysis revealed significant intergroup variations
specifically in IL-6, IL-8, and IL-1f levels. Group 2 demonstrated
markedly reduced cytokine concentrations compared to both Group
1 and Group 3, particularly evident in IL-6 (Group 2: 3.82 [3.59-5.73]
pg/mL vs Group 1: 6.12 [3.95-12.32] pg/mL vs Group 3: 4.60 [3.71-
21.40] pg/mL) and IL-8 levels (Group 2: 18.35 [15.38-26.68] pg/mL vs
Group 1: 37.98 [17.41-56.11] pg/mL vs Group 3: 34.7 [17.38-141.48]
pg/mL) (Figure 5A). Subgroup analysis revealed more pronounced
cytokine level alterations in pediatric patients compared to adults
across all study groups (Figure 5B). Similarly, pneumonia patients
exhibited enhanced cytokine responses relative to non-pneumonia
cases, mirroring the age-related response patterns (Figure 5C).

Discussion

This study examines shifts in viral, bacterial, and atypical
pathogen distribution following the COVID-19 pandemic, with
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FIGURE 4
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virus tests for each month. (B) The positive rate of bacterial tests for
each month.

focus on etiological characteristics and immune system responses.
Post-pandemic viral infection incidence reached 40.42%, exceeding
pre-pandemic rates of 29.8%-39.3% (Yu et al,, 2018; Haixu et al.,
20205 Li et al, 2021), consistent with data from September-
November 2023 (Gong et al., 2024). In contrast, pneumonia
incidence declined to 14.98%, below the pre-pandemic rate of
33.87% (Li et al, 2021).IFVA, IFVB, HAdV, HRV, HMPV, and
RSV were most frequently identified. IFVA and IFVB showed
particularly elevated prevalence across adult and pediatric
populations, in both pneumonia and non-pneumonia cases,
surpassing pre-pandemic levels (Li et al., 2021). HAdV and RSV
remained substantial contributors to childhood infections.
Unexpectedly, HRV and HMPYV, traditionally associated with
upper respiratory infections, emerged as predominant pneumonia
pathogens, exceeding IFV prevalence. HPIV4 showed increased
prevalence in pediatric pneumonia cases, reflecting its stronger
association with lower respiratory involvement compared to other
HPIV types (Oh et al, 2021).These findings indicate an altered
epidemiological landscape in the post-pandemic era, suggesting the
COVID-19 pandemic modified population susceptibility or
transmission dynamics of respiratory pathogens.

Epidemiological evidence indicates positive associations among
M. catarrhalis, H. influenzae and S. pneumoniae, likely mediated by
shared ecological niches, crowding conditions, and concurrent
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respiratory viral infections (van den Bergh et al., 2012; de
Steenhuijsen Piters et al., 2015). During viral respiratory
infections in children, nasopharyngeal bacterial colonization
density increases significantly, potentially exacerbating ARI
(Howard et al.,, 2019). H. influenzae detection exceeded 30% in
our cohort, substantially higher than reported colonization rates
(~17% in general populations and ~21% in healthy Chinese
children) (Yang et al, 2019) (Ma et al., 2023).Conversely, S.
pneumoniae showed an inverse age pattern: lower detection in
children contrasting with previous Chinese data (21.4% (95% CI:
18.3-24.4%)) (Marking et al., 2025).COVID-19 has profoundly
altered the nasopharyngeal microbiome, inducing dysbiosis
associated with increased susceptibility to secondary infections
and altered disease severity (Ren et al., 2021). M. pneumoniae,
which exhibits epidemic cycles of 1-3 years (Beeton et al., 2020),
showed increased detection in children during the post-pandemic
period, particularly in school-age groups. This increase likely
reflects resumed social activities and school attendance following
pandemic restrictions. Co-infections of H. influenzae with
respiratory viruses and M. pneumoniae with viruses were more
prevalent, suggesting microbial community imbalance may
facilitate bacterial-viral synergy. Our study reveals the complexity
of nasopharyngeal microbial interactions in respiratory tract
infections, demonstrating pathogen co-occurrence patterns and
their clinical implications. Future investigation should elucidate
mechanistic drivers of bacterial-viral pathogen synergy to inform
therapeutic strategies.

During the COVID-19 pandemic, NPIs—including mask-wearing
and social distancing—effectively reduced viral transmission but
simultaneously diminished population-level exposure to other
pathogens, thereby attenuating the “training” of adaptive immune
responses (Flaxman et al., 2020; Lai et al., 2020; Brauner et al., 2021).
The upper respiratory tract (URT), as the primary interface for
pathogen encounter, relies on robust mucosal immune responses for
early control of respiratory infections (Zhou et al., 2025). Several
cytokines reflect local mucosal immune responses rather than
systemic responses (Smith et al., 2021; Roubidoux et al., 2023). Most
notably, IL-6 and IL-8 levels decreased significantly in 2023 compared
to the pre-pandemic period (before 2020) and 2024, likely reflecting
adaptive immune system remodeling following pandemic-related
immune suppression. However, comorbidities (Farheen et al., 2021),
vaccination status, and prior SARS-CoV-2 exposure (Padilla-Borquez
et al, 2024) can also modulate cytokine production. Hence, the
suppression of the cytokines may be influenced by these potential
cofounders. Cytokine profiles differed substantially between children
and adults. Children demonstrated higher mucosal cytokine levels in
the post-pandemic period, consistent with more robust immune
activation. This elevated response likely reflects their relatively naive
immune systems and ongoing immune maturation, in contrast to the
more regulated responses observed in adults. Understanding temporal
and age-specific variations in mucosal immune responses is essential
for developing targeted therapeutic interventions and optimizing
patient outcomes in respiratory tract infections.

The primary limitations encompass single-center study design,
selection bias, inadequate adjustment for confounding factors, small
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sample sizes in cytokine analysis, lack of temporal comparability
between pre- and post-pandemic cohorts, and incomplete clinical
data. These factors constrain the generalizability of findings and limit
causal inference capacity, necessitating improvements in future research.

In summary, this study reveals distinct patterns in respiratory
pathogen epidemiology and immune responses across pediatric and

Frontiers in Cellular and Infection Microbiology 09

adult populations in the post-pandemic period. Cytokine alterations
identified in our analysis provide mechanistic explanations for age-
dependent differences in infection rates and severity. These findings
underscore the need for age-stratified surveillance systems and
targeted therapeutic strategies to optimize respiratory infection
prevention and treatment across diverse populations.
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