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Long COVID involves activation of 
proinflammatory and immune  
exhaustion pathways
 

Malika Aid    1, Valentin Boero-Teyssier1, Katherine McMahan1, Rammy Dong    2, 
Michael Doyle2, Nazim Belabbaci1, Erica Borducchi1, Ai-ris Y. Collier    1, 
Janet Mullington    2 & Dan H. Barouch    1 

Long COVID (LC) involves a spectrum of chronic symptoms after acute 
severe acute respiratory syndrome coronavirus 2 infection. Current 
hypotheses for the pathogenesis of LC include persistent virus, tissue 
damage, autoimmunity, endocrine insufficiency, immune dysfunction 
and complement activation. We performed immunological, virological, 
transcriptomic and proteomic analyses from a cohort of 142 individuals 
between 2020 and 2021, including uninfected controls (n = 35), acutely 
infected individuals (n = 54), convalescent controls (n = 24) and patients with 
LC (n = 28). The LC group was characterized by persistent immune activation 
and proinflammatory responses for more than 180 days after initial infection 
compared with convalescent controls, including upregulation of JAK-STAT, 
interleukin-6, complement, metabolism and T cell exhaustion pathways. 
Similar findings were observed in a second cohort enrolled between 2023 
and 2024, including convalescent controls (n = 20) and patients with LC 
(n = 18). These data suggest that LC is characterized by persistent activation 
of chronic inflammatory pathways, suggesting new therapeutic targets and 
potential biomarkers of disease.

Long COVID (LC), also known as post-acute sequelae of coronavirus 
disease 2019 (COVID-19) (PASC) or post-COVID-19 condition (PCC), is 
characterized by multi-organ symptoms that can persist for months 
or years after recovery from acute COVID-19 infection1–5. LC preva-
lence estimates vary widely; some estimates of the percentage of those 
infected with COVID-19 who develop LC are more than 10% (ref. 2). 
Risk factors for LC include the severity of the acute infection, age, sex 
and preexisting health conditions; the most common symptoms are 
fatigue, brain fog, exercise intolerance and cognitive impairment4,6.

The pathophysiology of LC1,7–11 remains unclear but may involve 
increased complement activation, metabolomic abnormalities, 
endocrine insufficiency, inflammatory responses and uncoordinated 
immune responses3,9,10,12–19. Current hypotheses include persistent 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or viral 
remnants20,21, autoimmunity4,7,22,23, cortisol insufficiency12,24, latent her-
pesvirus reactivation25, metabolic dysfunction19,22,26,27, T cell dysregula-
tion28 and inflammatory tissue damage2,6,9,14,16,29–33. Given the diversity 
of signs and symptoms of LC, treatment is typically symptomatic and 
personalized, with an emphasis on rehabilitation. The STOP-PASC 
trial34 revealed that a 15-day course of nirmatrelvir-ritonavir showed 
no significant improvement in treating LC (PASC) symptoms such as 
fatigue, brain fog and shortness of breath34, underlining the need for 
new therapeutic approaches for LC.

In this study, we evaluated the immunological and inflammatory 
responses in people with LC compared with convalescent controls 
(CCs) at 90–180 days and more than 180 days after initial COVID-19 
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enzyme-linked immunospot (ELISpot) assays against SARS-CoV-2 
WA1/2020, Delta and Omicron BA.1 in the CC and the LC groups did 
not detect differences in SARS-CoV-2 nAb titers and identified a trend 
toward higher Spike-specific IFNγ ELISpot responses in the LC com-
pared with the CC group (Fig. 1b and Extended Data Fig. 1a–c). We did 
not detect plasma SARS-CoV-2 viral loads in any CCs or individuals with 
LC using PCR with reverse transcription genomic or subgenomic viral 
load assays (Fig. 1c).

Bulk RNA-seq in PBMCs from individuals with LC (n = 26) and CCs 
(n = 21) at day 90–180 and in uninfected (n = 35) and acute (n = 54) 
individuals identified reads that mapped to the human genome and 
multiple common viruses (SARS-CoV-2, varicella zoster virus, Western 
equine encephalitis virus, Epstein–Barr virus, human cytomegalovirus, 
herpes simplex virus 1 and 2, influenza virus, rotavirus). We did not 
detect significant differences in viral read counts for these common 
viruses in the LC compared with the CC group (Extended Data Fig. 1d). 
Unsupervised clustering of bulk RNA-seq transcriptomic data revealed 
a distinct stratification between the LC group and the other cohorts, 
whereas the CC group clustered with the UCs (Fig. 1d). Differential 
bulk RNA-seq gene expression analysis in PBMCs across these groups 
showed upregulation of multiple proinflammatory markers in the LC 
compared with the CC group and uninfected individuals, including 
chemokines and cytokines (CXCL2, CXCL3, CCL3, IL10, IFNG, IL6, TNF, 
IL1B, IL1A, NFKBIZ), the NLRP3 inflammasome and the complement and 
coagulation genes C5, F3 and THBS1 (Fig. 1e,f). In contrast, downregu-
lation of activating (for example, KLRC2) and inhibitory (for example, 
KLRC1, KIR3DL2) natural killer (NK) cell receptors and T cell activation 
markers in the LC compared to the CC group was observed (Fig. 1f).

Analysis of differentially expressed genes in the LC group com-
pared with the CC group at day 90–180 after infection identified an 
increase of multiple proinflammatory markers, such as IL6, NLRP3, 
TNF, JAK2, CSF2, IL1B and IL10, in the LC compared with the CC group 
(Fig. 2a). Pathway enrichment analysis revealed upregulation of sig-
natures associated with signaling by proinflammatory cytokines such 
as IL-6, IFNα, IFNβ and IFNγ, JAK-STAT pathways, complement and 
coagulation cascade, metabolic pathways and immune cell signatures 
of monocytes, macrophages, neutrophils and dendritic cells (Fig. 2b), 
while RNA processing and nitrogen metabolism, oxidative stress and 
amino acid transport, were decreased in the LC compared with the CC 
group (Fig. 2b). Additionally, transcriptomic signatures of T cell activa-
tion and differentiation (CD28, ICOS, TCF7) were downregulated in the 
LC compared with the CC group at day 90–180 after infection (Fig. 2b), 
while CD8+ T cell exhaustion signatures and programmed cell death 
protein 1 (PDCD1) signaling-associated genes (IFI44, PRDM1, NR4A3, 
NFKBIA, MAFF) were significantly increased in the LC group (Fig. 2c), 
suggesting a potential role of T cell dysregulation in the pathogenesis 
of LC. Moreover, JAK1, JAK-STAT and IL-6 signaling pathways correlated 
inversely with T cell activation and positively with CD8+ T cell exhaus-
tion and PD-1 signaling (Extended Data Fig. 2a). Signatures of T cell 
activation and differentiation were positively correlated with IFNγ 
ELISpot responses, whereas proinflammatory signaling and immune 
exhaustion signatures were negatively correlated with IFNγ ELISpot 
responses (Extended Data Fig. 2b). We observed a significant correla-
tion between IL-6 and JAK-STAT signaling pathways with complement 
and coagulation pathways, metabolic signatures and PD-1 signaling 
in the LC group (Fig. 2d), suggesting a potentially coordinated role of 
these pathways in the pathogenesis of LC, while the IL-6 and JAK-STAT 
signaling pathways correlated negatively with the metabolism of amino 
acids and oxidative stress in the LC group (Fig. 2d). IFNγ, IL-6, JAK-STAT 
and T cell exhaustion pathways correlated with clinical symptoms in 
the group with LC, including fatigue, shortness of breath and cognitive 
complaints (Fig. 2e).

To investigate the timing of the chronic inflammatory pathways in 
the LC group in finer detail, we performed gene set enrichment analysis 
(GSEA) using blood samples collected at less than 30 days (LC, n = 6; 

infection using immunological assays, virological assays, transcrip-
tomics and proteomics. The first cohort was enrolled in 2020–2021, 
and the second cohort was enrolled in 2023–2024. Our data show that 
chronic inflammation, T cell exhaustion, metabolic dysregulation 
and upregulation of the JAK-STAT and interleukin-6 (IL-6) signaling 
pathways are key features of LC.

Results
Proinflammatory pathways are persistently upregulated in LC
We evaluated samples from 142 participants who were enrolled in an 
observational cohort of the Massachusetts Consortium for Patho-
gen Readiness (MassCPR) and Beth Israel Deaconess Medical Center 
(BIDMC) in Boston between April 2020 and October 2021 (hereafter 
the 2020–2021 cohort). This cohort included UCs (uninfected; n = 35), 
acutely infected individuals less than 30 days after COVID-19 infection 
(acute; n = 54), CCs (n = 24) and patients with LC (n = 28) (Table 1 and 
Supplementary Table 1). Clinical symptoms in the LC group included 
primarily shortness of breath, brain fog, fatigue, pain, cough and 
abnormal smell and taste (Fig. 1a), which is consistent with prior 
reports9,16,23,30,35–40. Peripheral blood mononuclear cells (PBMCs) were 
collected during the acute phase (<30 days) (LC: n = 6; CC: n = 5), 90–180 
days (LC: n = 26; CC: n = 21) and more than 180 days (LC: n = 21; CC: n = 5) 
after SARS-CoV-2 infection. Plasma samples were also collected dur-
ing the acute phase (LC: n = 8; CC: n = 4), 90–180 days (LC: n = 22; CC: 
n = 8) and more than 180 days (LC: n = 19; CC: n = 6) after SARS-CoV-2 
infection. We performed immunological and virological assays, bulk 
RNA sequencing (RNA-seq) and plasma proteomics.

Assessment of SARS-CoV-2 neutralizing antibody (nAb) 
responses using luciferase (LUC)-based pseudovirus neutralization 
assays and T cell responses using pooled peptide interferon-γ (IFNγ) 

Table 1 | Description and demographics for the  
2020–2021 cohort

NCs (n = 35) Acute COVID 
19+ infection 
(n = 54)

CCs (n = 24) LCs (n = 28)

Age

Median: 63 Median: 65.75 Median: 50.05 Median: 50.50

95% CI 95% CI 95% CI 95% CI

(54.39–66.71) (59.57–69.07) (46.28–59.21) (45–56.15)

Gender

Male 18 (51.42%) 27 (50%) 10 (40%) 4 (14.29%)

Female 17 (48.57%) 27 (50%) 15 (60%) 24 (85.71%)

Ethnicity

Asian 2 (5.71%) ND 0 (0%) ND

Black 6 (17.14%) ND 5 (20%) ND

White 22 (62.85%) ND 11 (44%) ND

Hispanic 5 (14.28%) ND 2 (8%) ND

Not 
Hispanic or 
Latino

0 (0%) ND 7 (28%) 28 (100%)

Number of 
days to first 
COVID+

NA

Median: 14 Median: 71 Median: 200

95% CI 95% CI 95% CI

(11.6–16.40) (44.67–97.33) (178.27–221.73)

Vaccine

NA NA

Moderna 3 (12%) 12 (42.85%)

Pfizer 2 (8%) 12 (42.85%)

Unknown 2 (8%) 4 (14.28%)

No vaccine 18 (72%) 0 (0%)

NA, not applicable; ND, unknown.
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Fig. 1 | Immunological and virological profiling of the 2020–2021 cohort. 
a, Symptom prevalence in individuals with LC (n = 28) and individuals who 
recovered (CCs, n = 24) in the 2020–2021 cohort. b, log10-transformed nAbs 
titers and IFNγ (ELISpot responses against the WH/2020, Delta and BA.1 
variants of SARS-CoV-2) in CC (n = 9) and LC (n = 41) individuals on day 90–180 
after infection. The dots are individual participants and the red bars are group 
medians. Samples from several time points were assessed for participants  
with LC. c, Quantification of SARS-CoV-2 genomic (N, E) and subgenomic  
(N single-guide RNA (sgRNA), E sgRNA) RNA in CCs (n = 9) and LCs (n = 41). 

Medians (red bars) are shown for each group. Samples from several time 
points were assessed for participants with LC. d, K-mean clustering across 
acute COVID-19 (n = 54), LCs (n = 28), CCs (n = 24) and uninfected (NC) (n = 35) 
individuals. All available samples were included in the k-mean analysis for the LC 
and CC groups. e, Heatmap of top significant (Padj < 0.05) proinflammatory genes 
upregulated (red) or downregulated (blue) in LCs compared to CCs or NCs at day 
90–180 after SARS-CoV-2 infection. f, Transformed log2 fold change expression 
of the top upregulated (pink) and downregulated (dark) genes in LCs compared 
to CCs and NCs (Padj < 0.05).
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Fig. 2 | Transcriptomic differences between LC and CC groups in the 
2020–2021 cohort. a, Scatter plot of the upregulated (red) or downregulated 
(blue) genes in the LC group (n = 26) compared with the CC (n = 21) group at 
day 90–180 after infection. b, Dot plots of the pathway normalized enrichment 
scores (NES) in LC compared with CC at day 90–180 after infection. The dot size 
illustrates the normalized enrichment scores. The color gradients reflect the 
GSEA (FDR) q > 0.05. c, Heatmaps of the normalized z-score gene expression of 

the top markers in the LC and CC group level for pathways of T cell activation, 
T cell differentiation and CD8+ T cell exhaustion. d, Correlation of the IL-6-JAK-
STAT3 signaling pathways with pathways upregulated or downregulated in the 
LC group. The red and blue lines indicate linear regression. The gray shading 
represents the 95% confidence interval (CI). P values are indicated. e, Heatmap of 
Spearman correlations between clinical symptoms and pathway activity levels in 
the LC group at day 90–180 after infection.
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CC, n = 5), day 30–100 (LC, n = 7; CC, n = 4), day 100–200 (LC, n = 22; 
CC, n = 5) and day 200–300 (LC, n = 22; CC, n = 6) after infection from 
individuals with LC and CCs. We observed upregulation of proinflam-
matory pathways associated with IL-1, IL-6, JAK-STAT, IFN signaling, cell 
cycle, metabolic pathways, complement activation and T cell exhaus-
tion pathways in the LC group by day 30, with increased and sustained 
effects for over 200 days (Extended Data Fig. 3). Pathways associated 
with IL-6, JAK-STAT and JAK1 signaling were upregulated at both day 

90–180 (Fig. 3a) and more than 180 days (Fig. 3b) in the LC group 
compared to the CC group, as highlighted by the persistent increase of 
several leading genes in the pathways, including IL6R, IL6, IL1R, CD14, 
CSF1, CSF3RLEPR, IL4R, STAT1, STAT3 and JAK2 (Fig. 3a,b). Weighted 
gene correlation network analysis revealed that individual markers of 
the JAK-STAT and IL-6 signaling pathways, including IL6R, AKT1, JAK2, 
IL1B, IFNGR1 and IFNGR2 and CD14 were highly correlated and positively 
associated with the subsequent development of LC (Fig. 3c).
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Fig. 3 | Persistent activation of IL-6 and JAK-STAT signaling pathways in  
the 2020–2021 cohort. a,b, Upregulated IL-6, IL-6-JAK-STAT3, JAK-STAT and  
JAK1 signaling pathways at day 90–180 (a) and more than 180 days (b) after  
SARS-CoV-2 infection in the LC group compared with the CC group. The top  
genes driving the enrichment of each pathway are shown in the red circles.  

The x axis represents each gene’s rank in the gene list, while the y axis shows the 
corresponding gene rank metric score. c, Gene interaction network analysis 
showing the top leading genes for the IL-6 and JAK-STAT signaling pathways.  
The edges represent the Spearman correlation between genes (P < 0.05). Hub 
genes with a high number of correlated genes are represented by larger circles.
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We also performed proteomics analysis on plasma from the LC 
(n = 22) and CC (n = 8) groups at day 90–180 (Fig. 4a and Supplementary 
Table 2). We observed increased levels of plasma cytokine signaling, 
including JAK-STAT (STAT5, STAT1, IL6ST, SOS1, RELB), IL-6, NF-κB 
signaling, complement and coagulation cascades (TMPRSS6, F8, C9, 
C1S, F9, C6, C1R, FN1), metabolic pathways (PTPN11, LEPR, PTEN, EIF4E) 
and corticotropin-releasing hormone and leptin signaling (TCF4, 
PRKCA, PRKCB, PLCG1) in the LC group compared to the CC group at 
day 90–180 after infection (Fig. 4a), while DNA damage repair (RAD51C, 
RAD51D, HUS1, MSH2, RPA2, PARP1, YY1, CETN2), cytotoxic T cell (DFFA, 
BCL2, FADD, B2M, CD3G, HLA-E, CD247, HLA-G, BID), telomere mainte-
nance (PCNA, PRIM1, TEN1, RUVBL1, RPA2) and amino acid metabolism 
(GNMT, PDHB, DLD, AMT, PDHA2, BHMT2, GOT1, MRI1, GOT2, MTAP, 
CTH) were decreased in the LC group compared to the CC group at day 
90–180 after infection (Fig. 4a). Furthermore, the plasma JAK-STAT 
signaling pathways by proteomics correlated positively with plasma 
proinflammatory signatures such as the NF-κB signaling pathway, 
complement activation, leptin signaling and corticotropin-releasing 
hormone signaling, and correlated negatively with plasma DNA dam-
age repair, cytotoxic T cell and granzyme B signaling in the LC group 
(Fig. 4b,c). These data indicated that LC is associated with chronic 
inflammation, as well as immunological and metabolic dysregulation.

Inflammation during acute infection predicts the 
development of LC
To evaluate whether activation of proinflammatory pathways during 
acute COVID-19 infection correlated with the subsequent development 

of LC, we performed an exploratory analysis of transcriptomic and 
proteomic changes in the subset of participants in this cohort (LC: 
n = 8; CC: n = 5) who had PBMC and plasma samples both during acute 
COVID-19 (< 30 days) and at day 90–180 after infection. Transcriptomic 
profiling of PBMCs indicated that acutely infected participants who 
subsequently developed LC had higher levels of proinflammatory 
pathways such as IFNβ and IFNγ, JAK-STAT and IL-6 signaling, as well as 
innate immune cell signatures of monocytes neutrophils and comple-
ment and coagulation cascades (CCL3, CCL20, CD160, F13A1, F3, IL6, 
NR4A1, NLRP3, THBS1) during acute infection compared with acutely 
infected patients who fully recovered (CCs) (Extended Data Fig. 4a,b). 
Plasma proteomics profiling validated the significant increase of 
proinflammatory pathways (IL-6 signaling, complement cascade, 
leptin signaling pathway) during acute infection in participants who 
subsequently developed LC compared to those who recovered (CC) 
(Extended Data Fig. 4c,d).

To explore further the potential association between early acti-
vation of proinflammatory pathways during acute infection and the 
subsequent development of LC, we used a supervised random forest 
(RF) algorithm to identify key blood and plasma features during acute 
infection that predict the development of LC. This model revealed 
that gene expression and protein levels of complement activation, 
proinflammatory response, JAK-STAT, IL-6, IL-6-JAK-STAT3, IFNβ and 
IFNγ signaling pathways during acute infection were among the top 
predictors for the development of LC (Extended Data Fig. 4e,f). A fea-
ture importance analysis revealed upregulation of the IL-6 and JAK-STAT 
signaling, corticotropin-releasing hormone, IL-10 and TNF signaling 
pathways during the acute phase were among the top predictors for 
the development of LC. Together, these observations suggested that 
early activation of proinflammatory pathways strongly predicted LC 
development based on gene and protein profiling.

Proinflammatory pathways are upregulated in a  
validation cohort
To confirm our findings in an independent cohort with LC, we per-
formed transcriptomics profiling of peripheral blood samples col-
lected on days 15–700 after infection from individuals with LC (n = 18) 
and CCs (n = 20) who were enrolled at the BIDMC clinical site of the 
National Institutes of Health (NIH) RECOVER prospective clinical trial 
between October 2022 and December 2024 (hereafter the 2023–2024 
cohort) (Table 2 and Supplementary Table 3). All study participants had 
standardized clinical meta-data and responded to structured symptom 
questionnaires41 (Extended Data Fig. 5a,b and Supplementary Table 3). 
Pain, neurological symptoms, brain fog, fatigue and cough were the pri-
mary symptoms that were more frequent in the LC compared with the 
CC groups (Fig. 5a). Transcriptomic analysis of peripheral blood in the 
LC (n = 10) and CC (n = 12) groups at day 90–180 after infection indicated 
upregulation of pathways linked to proinflammatory cytokine signaling 
(IL-6, IL-10 and IL-12 signaling), complement activation, proinflamma-
tory immune cell signaling, signatures of T cell exhaustion and certain 
metabolic and immune regulation pathways in the LC compared with 
the CC group (Fig. 5b). In contrast, pathways associated with mito-
chondrial function, amino acid metabolism and signatures of NK cells, 
T cells and B cells were downregulated in the LC compared with the CC 
group (Fig. 5b). In line with observations from the 2020–2021 cohort, 
the IL-6, JAK-STAT and JAK1 signaling pathways remained persistently 
upregulated in the LC group both at day 90–180 and more than 180 
days compared to the CC group (Extended Data Fig. 5c,d).

We used enzyme-linked immunosorbent assay (ELISA) and 
Meso Scale Discovery (MSD) assays to evaluate the plasma levels 
of selected proinflammatory markers at day 90–180 (LC, n = 19; CC, 
n = 13), more than 180 days (LC, n = 19; CC, n = 13) and UCs (n = 13) in 
the 2023–2024 cohort (Fig. 5c,d and Extended Data Fig. 6). Plasma 
levels of IL-6R were significantly elevated in the LC group compared 
to the CC and UC groups at day 90–180 and more than 180 days using 

Table 2 | Description and demographics for the  
2023–2024 cohort

CCs (n = 20) LCs (n = 18)

Age

Median: 48 Median: 55.5

95% CI 95% CI

(40.53–55.47) (48.16–62.84)

Sex at birth

Male 9 (45%) 4 (22.2%)

Female 11 (55%) 14 (77.7%)

Ethnicity

Asian 0 (0%) 0 (0%)

Black 0 (0%) 0 (0%)

White 0 (0%) 0 (0%)

Hispanic 2 (10%) 3 (16%)

Not Hispanic or Latino 18 (90%) 15 (83%)

Race

White 19 (95%) 15 (83%)

Native Hawaiian or other Pacific Islander 0 (0%) 1 (0.05%)

Other 0 (0%) 1 (0.05%)

Multiracial 0 (0%) 1 (0.05%)

Black or African American 1 (0.05%) 0 (0%)

Number of days to first COVID+

Median: 286 Median: 420

95% CI 95% CI

(213.63–358.37) (239.66–600.34)

Vaccine

ND ND

Moderna

Pfizer

Unknown

No vaccine
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ELISA (Fig. 5c) and MSD (Fig. 5d), suggesting a link between chronic 
inflammation and LC8,12,16,33.

We next combined data from the 2020–2021 and 2023–2024 
cohorts and performed an RF analysis using the gene expression pro-
files at day 90–180 and day 180–365 after infection to define the path-
ways that correlated most robustly with LC compared with CC. For 
each time point, RF models were trained using gene sets correspond-
ing to individual pathway modules, and performance was evaluated 
using receiver operating characteristic (ROC) curves and area under 
the curve (AUC) metrics. Pathways related to IL-6, JAK-STAT, IFNγ,  

proinflammatory response, antigen presentation and activation,  
and complement cascade were the top pathways associated with LC 
status at day 90–180 (Fig. 6a) and day 180–365 (Extended Data Fig. 7). 
Individual markers within the IL-6 and JAK-STAT signaling pathways, 
including JAK1, PIK3, CXCL8, BCL2L1, OSM, MAP3K8 and STAT3 were the 
top genes associated with LC (Fig. 6b).

Finally, in an exploratory sex-stratified analysis at day 90–180 
after infection, using transcriptomic profiling in peripheral blood 
in the combined cohort, females with LC (n = 29) showed stronger 
enrichment of inflammatory pathways than females who recovered  
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Fig. 4 | Proteomic differences between LC and CC groups in the 2020–2021 
cohort. a, Dot plots representing pathway NES scores (GSEA, nominal P < 0.05) 
in LC (n = 22) versus CC (n = 8) at day 90–180 after infection. Upregulated 
pathways are shown in red gradient and downregulated pathways are shown in 
blue gradient. Color gradients reflect a GSEA P < 0.0.5. b, Correlation of JAK-STAT 
signaling and selected pathways from a. Each point represents the per-patient 
single-sample GSEA (ssGSEA) enrichment score for the two indicated pathways. 
The lines show the ordinary least-squares fit with shaded 95% CIs. The Spearman 

correlation linear model R2 and two-sided P values are annotated. The red and 
blue fits indicate positive and negative slopes. c, Pathway Spearman correlation 
matrix between pathways upregulated or downregulated in the LC group 
compared with the CC group at 90–180 days after SARS-CoV-2 infection.  
The circle color encodes the sign of the Spearman correlation coefficient ρ  
(red, positive; blue, negative) and circle size encodes |ρ | ; nonsignificant 
correlations (P > 0.05) are shown as empty squares.
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(CC, n = 14), including monocyte signatures, proinflammatory 
cytokine/chemokine signaling, complement and coagulation cas-
cades, IL-6, JAK1, JAK-STAT signaling, and T cell exhaustion (Extended 
Data Fig. 8a). In the LC group, these pathways were generally higher in 
females than males (Extended Data Fig. 8b), whereas no significant sex 
differences were detected within the CC group (Extended Data Fig. 8c). 
These data demonstrate persistent activation of proinflammatory 
pathways in a validation LC cohort, with possibly greater inflammation 
in females compared with males, although these observations require 
confirmation in larger studies.

Discussion
In this study, we found that individuals with LC were characterized by 
persistent activation of chronic inflammatory pathways compared with 
CCs. These pathways included proinflammatory cytokine signaling, 
complement activation, metabolic dysregulation and immune exhaus-
tion and persisted for more than 180 days. These findings suggest that 
chronic inflammation may contribute to the pathogenesis of LC and 
define potential new therapeutic targets.

We observed that participants with LC exhibited reduced gran-
zyme B and cytotoxic T cell signaling and increased immune exhaus-
tion, suggesting dysregulated cross-talk between the innate and 
adaptive immune responses15,28,42. Our findings are consistent with prior 
reports that the IL-6 and JAK-STAT signaling pathways were upregulated 
in individuals with LC28,43,44, particularly in those with cardiorespiratory 
or multisystem symptoms. We also found that chronic upregulation of 
IFNγ signaling was associated with LC and correlated with signatures of 
reduced T cell activation and increased T cell exhaustion, suggesting 
that chronic immune stimulation may lead to functional impairment 
of T cells. These findings are consistent with prior observations5,28 and 
suggest the potential role of T cell dysregulation and exhaustion in LC 
pathogenesis.

Our study also confirms and extends prior reports of metabolic 
dysregulation in LC1,8,10,12,19,22,26,30,33. We observed a decrease in amino 
acid metabolism and an increase in corticotropin-releasing hor-
mone signaling, leptin signaling, fatty acid metabolism, bile acid and 
beta-alanine metabolism in LC. Moreover, these metabolic pathways 
correlated with proinflammatory pathways in the LC group, suggesting 
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Fig. 5 | Transcriptomic differences between LC and CC groups in the  
2023–2024 cohort. a, Symptom prevalence in individuals with LC (n = 18) or 
individuals who recovered (CC, n = 20) in the 2023–2024 cohort. b, Dot plots 
of NES in LC compared to CC groups at day 90–180 after SARS-CoV-2 infection. 
Upregulated pathways are shown in red; downregulated pathways are shown as 
blue gradients. Dot size indicates the NES. The color gradient indicates a GSEA 

FDR of q < 0.05. c,d, IL-6R plasma level measured using ELISA (c) and MSD (d) 
assays in LC (n = 18), CC (n = 13) and naive UCs (n = 13) at day 90–180, more than 
90 days and more than 180 days after SARS-CoV-2 infection. Dots represent 
participants; the red horizontal bars indicate the group medians. A two-sided 
Kruskal–Wallis tests with post hoc pairwise comparisons using Dunn’s test with 
Bonferroni correction was used. Padj values are shown.
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a link between metabolic dysregulation and chronic inflammation. We 
also observed decreased activity of the telomere maintenance and 
DNA damage recognition and repair pathways, chromatin regulation 
and DNA methylation in the LC group. Impaired telomere maintenance 
could be associated with premature cellular senescence or apoptosis 
that may impede tissue repair processes45,46.

Our study is limited by relatively small cohorts of individuals with 
LC who were predominantly female and with symptom clusters that 
primarily involved fatigue, brain fog and pain. Larger studies from 
more diverse populations will be required to assess the generaliz-
ability of our findings. Nevertheless, we observed good concordance 
between the 2020–2021 initial cohort and the 2023–2024 validation 
cohort. Another limitation is the use of bulk RNA-seq, which limits 
more detailed resolution of pathways at the cellular level. Therefore, 
future studies should use single-cell transcriptomic and T cell profil-
ing technologies to provide higher-resolution data. Nevertheless, our 
observations suggest potential therapeutic targets for LC that could 
be explored in clinical trials. Because the IL-6 and JAK-STAT pathways 
were among the top upregulated pathways in participants with LC in 
both the 2020–2021 and the 2023–2024 cohorts, we have initiated a 
clinical trial to evaluate the therapeutic efficacy of the JAK1 inhibitor 
abrocitinib for LC (NCT06597396).

In conclusion, our data demonstrate that LC is characterized by 
chronic inflammation, immune exhaustion and metabolic dysregula-
tion. Current therapeutic efforts are largely focused on antiviral agents 
to address potential residual viral replication. However, the lack of 
efficacy of nirmatrelvir-ritonavir in treating LC highlights the need to 
explore alternative therapeutic strategies34. Our data suggests that the 
JAK-STAT and IL-6 pathways, and the IFN and metabolic pathways, are 
potential therapeutic targets that could be evaluated for LC.
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Methods
Clinical cohorts
The 2020–2021 cohort samples were collected between April 2020 
and October 2021 as part of the MassCPR COVID-19 biorepository. This 
discovery cohort of 142 individuals included UCs (n = 35, 51% female 
and 49% male), acutely infected individuals (n = 54, 50% female and 
50% male), CCs (n = 24, 60% female and 40% male) and patients with LC 
(n = 28, 86% female and 14% male). Samples were collected during the 
acute phase (< 30 days after infection) and during the chronic phase 
between 30 and 300 days after infection.

The 2023–2024 validation cohort samples were collected between 
October 2022 and December 2024 as part of the BIDMC biorepository 
jointly with the BIDMC clinical site of the NIH RECOVER study with 
the complete clinical meta-data and structured symptom question-
naires. This validation cohort of 38 individuals included CCs (n = 20, 
55% female and 45% male) and patients with LC (n = 18, 78% female and 
22% male). Samples were collected during the acute phase (< 30 days 
after infection) and during the chronic phase between 30 and 700 
days after infection.

Symptoms in the 2020–2021 cohort were self-reported, whereas 
symptoms in the 2023–2024 cohort were collected with the RECOVER 
standardized symptom questionnaire. All samples were collected 
as part of the MassCPR, RECOVER and BIDMC biorepository studies 
with institutional review board approval and participant informed 
written consent. De-identified and cryopreserved samples were used 
in this study.

NAb assay
The nAb titers against the SARS-CoV-2 variants were determined using 
pseudotyped viruses expressing a LUC reporter gene. In brief, a LUC 
reporter plasmid pLenti-CMV Puro-Luc (Addgene), the packaging 
construct psPAX2 (AIDS Resource and Reagent Program) and Spike 
protein expressing pcDNA3.1-SARS-CoV-2 SΔCT were cotransfected 
into human HEK 293T cells (CRL-3216, ATCC) with lipofectamine 2000 
(Thermo Fisher Scientific). Pseudotyped viruses of the SARS-CoV-2 vari-
ants were generated using the Spike protein from WA1/2020 (Wuhan/
WIV04/2019, GISAID accession ID: EPI_ISL_402124), B.1.617.2 (Delta, 
GISAID accession ID: EPI_ISL_2020950) and Omicron BA.1 (GISAID 
accession ID: EPI_ISL_7358094.2). Forty-eight hours after transfection, 
the supernatants containing the pseudotyped viruses were collected 
and purified using filtration with 0.45-μm filter. To determine nAb titers 
in human sera, HEK-293T-hACE2 cells were seeded in 96-well tissue 
culture plates at a density of 2 × 104 cells per well overnight. Three-fold 
serial dilutions of heat-inactivated serum samples were prepared and 
mixed with 60 μl of pseudovirus and incubated at 37 °C for 1 h before 
adding to the HEK-293T-hACE2 cells. Forty-eight hours later, cells were 
lysed in Steady-Glo Luciferase Assay (Promega Corporation) according 
to the manufacturer’s instructions. SARS-CoV-2 neutralization titers 
were defined as the sample dilution at which a 50% reduction (NT50) 
in relative light units was observed relative to the average of the virus 
control wells. Titers greater than 1:20 were considered positive.

IFNγ ELISpot assay
Cellular immune responses specific to SARS-CoV-2 were assessed 
using IFNγ ELISpot assays using pools of overlapping 15-amino-acid 
peptides for the Wisconsin delta and omicron variants (21st Century 
Biochemicals). Ninety-six-well multiscreen plates (Merck Millipore) 
were coated with 1 µg per well of mouse antihuman IFNγ (MabTech) 
overnight in endotoxin-free Dulbecco’s PBS (DPBS) overnight at 
4 °C. Plates were washed with DPBS three times and blocked using 
Roswell Park Memorial Institute 1640 media containing 10% FCS for 
2–4 h at 37 °C. Peptides pools were prepared at a concentration of 
2 µg per well, and 200,000 cells per well were added. Peptides and 
cells were incubated for 15–20 h at 37 °C. The plates were washed with 
DPBS-Tween seven times and then incubated with 1 µg ml−1 per well of 

biotinylated antihuman IFNγ (MabTech) for 2–4 h at room temperature, 
followed by four washes with DPBS-Tween and 1.33 µg ml−1 per well of 
alkaline phosphatase-conjugated anti-biotin (Rockland) for 2–3 h at 
room temperature. Plates were developed with nitroblue tetrazolium
-5-bromo-4-chloro-3-indolyl-phosphate chromogen (Pierce), stopped 
by washing with tap water, and read using an ELISpot reader (KS ELIS-
POT Reader, Carl Zeiss). The number of spot-forming cells per 106 cells 
were calculated, subtracted over background (PBMCs incubated with 
medium and dimethylsulfoxide without peptide).

Bulk RNA-seq
PBMCs were lysed in 700 μl of TRIzol and then extracted using the 
miRNeasy Mini Kit (QIAGEN) with on-column DNase digestion. RNA 
quality was assessed using a TapeStation 4200 (Agilent Technologies) 
and then 10 ng of total RNA was used as input for complementary DNA 
(cDNA) synthesis using the Clontech SMART-Seq v4 Ultra Low Input 
RNA Kit (Takara Bio) according to the manufacturer’s instructions. 
Amplified cDNA was fragmented and appended with dual-indexed 
barcodes using the Nextera XT DNA Library Preparation Kit (Illu-
mina). Libraries were validated using capillary electrophoresis on a 
TapeStation 4200, pooled at equimolar concentrations and sequenced 
with PE100 reads on an Illumina NovaSeq 6000, yielding ~30 million 
reads per sample on average. Alignment was performed using STAR 
v.2.7.3a47; transcripts were annotated using a composite genome refer-
ence that included the GRCh38 Ensembl release 100 and SARS-CoV-2 
(GCF_009858895.2, ASM985889v3, MN985325.1). Transcript abun-
dance estimates were calculated internal to the STAR aligner using 
the htseq-count algorithm. Transcript abundance estimates were 
calculated internal to the STAR aligner using the htseq-count algorithm. 
DESeq2 (ref. 48) was used for normalization, producing a normalized 
read count.

To assess for viral transcription, sample reads were aligned to a 
reference of 59 complete viral genome sequences using the Burrows–
Wheeler Aligner (v.0.7.17)49 to produce a sorted alignment (.bam) file. 
SAMtools (v.1.3.1) was used to summarize the number of reads aligned 
to each genome. The complete FASTA file is provided along with the 
bulk RNA-seq raw data.

Plasma proteomics
A total of 55 ml serum or plasma from all participants, five pooled 
plasma controls and one buffer control were analyzed using the SomaS-
can Assay Kit for human plasma V4.1 (cat. no. 900-00020), measuring 
the expression of 6,596 unique human protein targets using 7,596 slow 
off-rate modified aptamer reagents (SOMAmer), single-stranded DNA 
aptamers, according to the manufacturer’s standard protocol (Soma-
Logic). The modified aptamer binding reagents, SomaScan assay, and 
its performance characteristics and specificity to human targets, have 
been described previously. The assay used standard controls, including 
12 hybridization normalization control sequences used to control for 
variability in the Agilent microarray readout process, and five human 
calibrator control pooled plasma replicates and three quality control 
(QC) pooled replicates used to mitigate batch effects and verify the 
quality of the assay run using standard acceptance criteria. The readout 
was performed using the Agilent microarray hybridization, scan and 
feature extraction technology.

Twelve hybridization control SOMAmers were added alongside 
SOMAmers to be measured from the serum samples and controls of 
each well during the SOMAmer elution step to control for readout 
variability. The control samples were run repeatedly during assay 
qualification and robust point estimates were generated and stored as 
references for each SOMAmer result for the Calibrator and QC samples. 
The results are used as references for the SomaScan v.4.1 Assay. Plate 
calibration was performed by calculating the ratio of the calibrator 
reference relative fluorescence unit (RFU) value to the plate-specific 
calibrator replicate median RFU value for each SOMAmer. The resulting 
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ratio distribution was decomposed into a plate scale factor defined 
by the median of the distribution and a vector of SOMAmer-specific 
calibration scale factors. Normalization of QC replicates and sam-
ples was performed using adaptive normalization by maximum likeli-
hood with point and variance estimates from a normal US population. 
Post-calibration accuracy was estimated using the ratio of the QC refer-
ence RFU value to the plate-specific QC replicate median RFU value for 
each SOMAmer. The resulting QC ratio distribution provides a robust 
estimate of accuracy for each SOMAmer on every plate. SomaScan RFU 
values and clinical information were obfuscated to protect personally 
identifiable information while preserving biologically relevant bio-
markers. These reference datasets were provided by SomaLogic. We 
used the limma R package to identify differentially expressed proteins 
in the LC and CC groups. The method involves fitting a linear model 
to the data and then performing a t-test to identify proteins that are 
differentially expressed between two or more groups. P values were 
corrected for multiple testing using the Benjamini–Hochberg method. 
The R packages ggplot2 and ComplexHeatmap were used to generated 
the figures. Pathway enrichment analysis was performed using GSEA 
(https://www.gsea-msigdb.org/gsea). Genes were preranked accord-
ing to the fold change from the highest to the lowest; GSEA was used 
to assess the enrichment of selected gene sets. Cytokine signaling, 
immune cell signatures and molecular pathways were compiled from 
the MSigDB Hallmark, C2, C7 and C3 gene sets (www.gsea-msigdb.
org/gsea/msigdb/collections.jsp) and the blood transcriptional 
modules. The GSEA Java desktop program was downloaded from the 
Broad Institute (www.broadinstitute.org/gsea/index.jsp) and used 
with GSEA preranked module parameters (number of permutations: 
1,000; enrichment statistic: weighted; 10 ≤ gene set size ≤ 5,000)50. 
Sample-level enrichment analysis50 was used to investigate the enrich-
ment of pathways in each animal. Briefly, the expression of all genes 
in a specific pathway was averaged across samples and compared to 
the average expression of 1,000 randomly generated gene sets of the 
same size. The resulting z-score was then used to reflect the overall 
perturbation of each pathway in each sample.

ssGSEA
We estimated pathway activity per sample using ssGSEA51. Leading-edge 
gene lists were parsed from the prior GSEA output and used as the gene 
sets for each pathway. For every sample, genes were ranked according 
to normalized expression and an enrichment score was computed as 
the difference between the empirical cumulative distributions of ranks 
for leading-edge genes versus all other genes; higher scores indicate 
greater pathway activation. Scores were normalized (per sample and 
then z-scored across samples) to enable comparisons, yielding a sam-
ples × pathways ssGSEA matrix for the downstream analyses.

Gene expression correlation analysis between symptoms and 
pathway scores
To explore associations between symptom presence and gene expres-
sion signatures, we merged the one-hot symptom mapping with the 
original cohort data containing pathway-level gene expression profiles. 
For each of the 18 symptom categories, we then identified all patients 
who had that symptom and averaged their gene expression values 
across all measured pathways. In other words, for each symptom like 
fatigue or brain fog, we looked at all the patients who had that symptom 
and calculated the average expression level of each gene pathway in 
that subgroup. This produced an 18 × n matrix (where n is the number 
of gene pathways), with each cell representing the average expression 
in patients with that symptom. The resulting correlation matrix was 
visualized using a heatmap with color mapping reflecting average 
expression levels. This can be formally represented as:

C j,k =
1
|S j|

∑
i∈Sj

Gi,k

Where Cj,k is the average expression of gene pathway (k) for symp-
tom (j), Sj is the set of patients with symptom (j) and Gi,k is the expression 
value of gene pathway (k) for patient (i).

ELISA
Cytokines were assessed using ELISA. An antihuman cytokine coating 
antibody was adsorbed onto 96-microwell plates. Microwells were 
washed with wash buffer; human serum samples and human cytokine 
standards were prediluted in assay buffer and added to each plate. Plates 
were then incubated for 1 h before adding antihuman cytokine horse-
radish peroxidase (HRP). After an additional 1-h incubation, plates were 
again washed with wash buffer. SeraCare KPL TMB SureBlue Start solu-
tion was added to each well; plate development was halted by adding 
SeraCare KPL TMB Stop solution to each well. Absorbance at 450 nm was 
recorded with a VersaMax Microplate Reader (Molecular Devices). The 
standard curve was prepared from human cytokine standard dilutions 
and the human cytokine concentration was determined. For each sam-
ple, the cytokine concentration was calculated using a four-parameter 
logistic curve fit; cytokine concentrations of the unknown samples were 
interpolated from the linear portion of the standard curve generated 
from the human cytokine standards of known concentration.

MSD
Serum levels of human IL-6R were tested using the R-PLEX Human IL-6R 
Kits from Meso Scale Discovery (cat. no. K1510GR-2) by the Metabolism 
and Mitochondrial Research Core (BIDM) according to the manufac-
turer’s instructions. Briefly, the plate was coated using the provided 
biotinylated capture antibody (1:100 dilution). The highest Calibrator 
standard is 2,000 pg ml−1. Then a fourfold serial dilution was done to 
generate seven calibrator curve using a four-parameter logistic model. 
The detection limit is 0.4 pg ml−1. Samples were thawed on ice and 
diluted at a 1:200 ratio using the Diluent 7 provided by the kit. The assay 
plate was read by a MESO QuickPlex SQ 120 instrument and data were 
analyzed using the Discovery workbench 4.0 software.

RF analysis
We applied ssGSEA, which transforms gene expression profiles into 
enrichment scores for predefined gene sets (for example, pathways), 
thereby producing a matrix in which each row corresponds to a sample 
and each column represents a pathway activity score. To assess the 
contribution of individual pathways, we trained an RF classifier using 
the ssGSEA scores as input features. The dataset was randomly split into 
a training set (70%) and a testing set (30%) using stratified sampling 
to preserve the class distribution. The RF model was trained with 500 
trees using the randomForest R package, where the outcome variable 
was CLASS (LC or CC) and the predictors were the ssGSEA-derived path-
way scores. Model performance was evaluated using the held-out test 
set, with classification accuracy and a confusion matrix computed to 
assess prediction quality. To determine the relative importance of each 
pathway in predicting the LC outcome, we extracted the mean decrease 
in Gini impurity (MDG) from the trained RF model. The MDG quanti-
fies how much each feature (pathway/gene) contributes to reducing 
classification uncertainty. A scatter plot was created to display the 
relationship between prediction accuracy and MDG for each pathway 
using transcriptomic and proteomic pathways. We added bar plots 
to visualize the top pathways/genes ranked according to importance 
generated by the RF model. Each bar represents a pathway; its length 
reflects its importance in the RF model. This plot highlights the most 
influential pathways in distinguishing LC from CC based on ssGSEA 
scores. All figures were generated using R v.4.4.2, using standard visu-
alization packages for statistical and transcriptomic data analysis.

Statistical analyses
The data from the RNA-seq and proteomics were analyzed with RStu-
dio (v.4.4.0) in PRISM 9.0 (GraphPad Software). Pathways enrichment 
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analysis was performed using the GSEA software. Sample-level ssGSEA 
was performed using the GSVA (v.1.40) R package. The ssGSEA analysis 
delineates a comparative exploration of the groups’ median values, vis-
ually represented through the data distribution and median lines. Sta-
tistical significance, denoted by the calculated P value, is highlighted 
above the comparison line, where a P < 0.05 is considered statistically 
significant. The two-sided Mann–Whitney U-test was used to identify 
significant differences between groups. For more than one group 
comparison, we used a Kruskal–Wallis test to compare all three groups; 
when significant, we performed post hoc pairwise comparisons with 
the Dunn’s test with Bonferroni correction for multiple comparisons. 
nAb titers and IFNγ ELISpot counts were analyzed after log10 trans-
formation; to avoid undefined values, measurements <1 were set to 1 
before transformation. For each viral variant (WH/2020, Delta, BA.1), 
CC and LC groups were compared using a two-sided Wilcoxon rank-sum 
(Mann–Whitney U-test) test on the log10 values. Multiple testing across 
variants within each assay (nAb and ELISpot analyzed separately) was 
controlled using the Benjamini–Hochberg procedure; adjusted qvalues 
are reported in the subpanel titles; nominal P values are shown above 
the parentheses. A nonparametric test was selected a priori because 
immune readouts are typically right-skewed with potential outliers and 
unequal variances, and the groups are independent. Individual data 
and group medians are displayed in the plots. Analyses were performed 
in R using the base wilcox.test with Benjamini–Hochberg adjustment. 
Because of the limited sample availability, no statistical methods were 
used to predetermine sample sizes and we used all the samples that 
were made available to us. Where applicable, data distribution was 
assumed to be normal but this was not formally tested.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are available in the manuscript or the supplementary materials. 
Transcriptomic raw data have been deposited in the Gene Expression 
Omnibus under accession no. GSE226260.

Code availability
The analysis code, data preparation, stratified subject-level splitting, 
RF training and ROC/AUC evaluation are available at https://github.
com/Barouch-and-BCGE-Labs/PASC-Project.
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Extended Data Fig. 1 | Immunologic and virologic profiling in the 2020/2021 
cohort. a-c, Neutralizing antibody (NAb) titers and pooled peptide Spike-specific 
IFN-g responses against SARS-CoV-2 WA1/2020, Delta and BA.1 at < 30 days (a), 
90-180 days (b), and >180 days (c) after SARS-CoV-2 infection in the CC and the LC 

groups. d, Viral reads count for multiple viruses in the CC and LC groups.  
Group comparison is performed using the two-sided Mann-Whitney tests.  
Medians (red bars) shown for each group. For all plots P > 0.05 is considered  
not significant.
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Extended Data Fig. 2 | T cell dysfunction in the LC group. a, Scatter plots 
showing the correlation of T cell activation, PD-1 signaling and CD8 T cell 
exhaustion with JAK_STAT and JAK1 signaling pathways in the LC group at  
90-180 days after infection. The gray shadow covers the 95% confidence interval. 

b, Correlation plot between T cell responses and neutralizing titers for WH,  
Delta and Omicron variants and top pathways in the LC group. Circles show 
Spearman rank correlations (ρ); size scales with |ρ| and color encodes the  
two-sided t test p value. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Extended Data Fig. 3 | Persistent proinflammatory pathways in the 2020/2021 cohort. Heatmap showing the median ratio ssGSEA score shown as the LC/CC ratio 
(row-normalized) for each pathway at <30 days (LC, N = 6; CC, N = 5), 30-100 days (LC, N = 7; CC, N = 4), 100-200 days (LC, N = 22; CC, N = 5) and 200-365 days  
(LC, N = 22; CC, N = 6).
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Extended Data Fig. 4 | Acute inflammation is associated with long Covid in 
the 2020/2021 cohort. a-b, Dot plots showing the upregulated enriched blood 
transcriptomic pathways (a) and genes (b) increased in the LC group compared to 
CC at < 30 days post infection. c-d, Same as a-b for plasma proteomics pathways 

(c) and plasma markers (d). e, Bar plot showing the top key transcriptomic 
pathways identified by random forest analysis. The pathways are ranked in 
descending order of importance with respect to the accuracy of the model.  
f, same as e for the top key proteomics pathways.
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Extended Data Fig. 5 | Persistent upregulation of JAK_STAT and IL-6 pathways 
in the 2023/2024 cohort. a-b, Bar plots showing the number (X axis) and the 
proportion (next to each bar) of medication history and preexisting conditions 
in the LC and CC groups. c-d, Rank for leading genes in the IL6, JAK_STAT and JAK1 

pathways in the LC group at 90-180 (c) days and after 180 days (d) post infection. 
The x-axis represents each gene’s rank in the gene list, while the y-axis shows the 
corresponding GSEA rank metric score.
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Extended Data Fig. 6 | Plasma level of additional cytokines in the LC and the 
CC groups. a,b, Plasma level of additional cytokines measured by ELISA (a) and 
Mesoscale Discovery (MSD) (b) in LC (N = 19), CC (N = 13), and uninfected controls 

(N = 13); red horizontal bars indicate group medians; P values were assessed two-
sided Kruskal–Wallis tests with post-hoc pairwise comparisons used Dunn’s test 
with Bonferroni correction. P > 0.05 is considered not significant.
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Extended Data Fig. 7 | Random forest model in the combined 2020/2021 and 2023/2024 cohorts. Receiver Operating Characteristic (ROC) curves and area under 
the curve AUC showing the performance of random forest models trained on selected pathways at 180-365 days post infection.
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Extended Data Fig. 8 | Sex differences in the combined 2020/2021 and 
2023/2024 cohorts. a, Dot plots showing the upregulated enriched blood 
transcriptomic pathways upregulated (red gradient) or downregulated  
(blue gradient) in the female LC group (N = 29) compared to female CC (N = 14) at  

90-180 days post-infection. b-c, Pathway’s sample-level score (ssGSEA) 
comparing female (F) to male (M) in LC (b) and CC (c) groups. Group comparison 
is performed using the two-sided Mann-Whitney tests. Medians (red bars) shown 
for each group. For all plots P > 0.05 is considered not significant (ns).

http://www.nature.com/natureimmunology
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