nature immunology

Article

https://doi.org/10.1038/s41590-025-02353-x

Long COVID involves activation of
proinflammatory and immune
exhaustion pathways

Received: 14 August 2025

Accepted: 23 October 2025

Published online: 12 December 2025

W Check for updates

Malika Aid®", Valentin Boero-Teyssier', Katherine McMahan', Rammy Dong ®2,
Michael Doyle?, Nazim Belabbaci', Erica Borducchi', Ai-ris Y. Collier®',
Janet Mullington ®2 & Dan H. Barouch®"

Long COVID (LC) involves aspectrum of chronic symptoms after acute
severe acute respiratory syndrome coronavirus 2 infection. Current
hypotheses for the pathogenesis of LC include persistent virus, tissue
damage, autoimmunity, endocrine insufficiency, immune dysfunction

and complement activation. We performed immunological, virological,
transcriptomic and proteomic analyses from a cohort of 142 individuals
between 2020 and 2021, including uninfected controls (n = 35), acutely
infected individuals (n = 54), convalescent controls (n = 24) and patients with
LC (n=28). The LC group was characterized by persistentimmune activation
and proinflammatory responses for more than 180 days after initial infection

compared with convalescent controls, including upregulation of JAK-STAT,
interleukin-6, complement, metabolism and T cell exhaustion pathways.
Similar findings were observed in asecond cohort enrolled between 2023
and 2024, including convalescent controls (n = 20) and patients with LC
(n=18). These datasuggest that LCis characterized by persistent activation
of chronicinflammatory pathways, suggesting new therapeutic targets and
potential biomarkers of disease.

Long COVID (LC), also known as post-acute sequelae of coronavirus
disease 2019 (COVID-19) (PASC) or post-COVID-19 condition (PCC), is
characterized by multi-organ symptoms that can persist for months
or years after recovery from acute COVID-19 infection'. LC preva-
lence estimates vary widely; some estimates of the percentage of those
infected with COVID-19 who develop LC are more than 10% (ref. 2).
Risk factors for LC include the severity of the acute infection, age, sex
and preexisting health conditions; the most common symptoms are
fatigue, brain fog, exercise intolerance and cognitive impairment*®,
The pathophysiology of LC""™ remains unclear but may involve
increased complement activation, metabolomic abnormalities,
endocrineinsufficiency, inflammatory responses and uncoordinated
immune responses®>”'>>°_Current hypotheses include persistent

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or viral
remnants’>?, autoimmunity*”**?*, cortisol insufficiency'**, latent her-
pesvirus reactivation®, metabolic dysfunction'**>**?, T cell dysregula-
tion”® and inflammatory tissue damage®®**'¢*-33_Given the diversity
of signs and symptoms of LC, treatment is typically symptomatic and
personalized, with an emphasis on rehabilitation. The STOP-PASC
trial** revealed that a 15-day course of nirmatrelvir-ritonavir showed
no significant improvement in treating LC (PASC) symptoms such as
fatigue, brain fog and shortness of breath*, underlining the need for
new therapeutic approaches for LC.

Inthis study, we evaluated the immunological and inflammatory
responses in people with LC compared with convalescent controls
(CCs) at 90-180 days and more than 180 days after initial COVID-19
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Table 1| Description and demographics for the
2020-2021cohort

NCs(n=35) AcuteCOVID CCs(n=24) LCs (n=28)
19" infection
(n=54)
Median: 63 Median: 65.75 Median: 50.05 Median: 50.50
Age 95% ClI 95% ClI 95% CI 95% CI
(54.39-66.71) (59.57-69.07) (46.28-59.21) (45-56.15)
Gender
Male 18 (51.42%) 27 (50%) 10 (40%) 4(14.29%)
Female 17 (48.57%) 27 (50%) 15 (60%) 24 (85.71%)
Ethnicity
Asian 2 (5.71%) ND 0(0%) ND
Black 6 (1714%) ND 5(20%) ND
White 22(62.85%) ND 1 (44%) ND
Hispanic 5(14.28%) ND 2 (8%) ND
Not 0(0%) ND 7 (28%) 28 (100%)
Hispanic or
Latino
Median: 14 Median: 71 Median: 200
Number of
daystofirst NA 95% CI 95% ClI 95% CI
CcovID*
(11.6-16.40) (44.67-97.33) (178.27-221.73)
Vaccine
Moderna 3 (12%) 12 (42.85%)
Pfizer NA NA 2(8%) 12 (42.85%)
Unknown 2 (8%) 4 (14.28%)
No vaccine 18 (72%) 0 (0%)

NA, not applicable; ND, unknown.

infection using immunological assays, virological assays, transcrip-
tomics and proteomics. The first cohort was enrolled in 2020-2021,
andthe second cohort was enrolled in2023-2024. Our data show that
chronic inflammation, T cell exhaustion, metabolic dysregulation
and upregulation of the JAK-STAT and interleukin-6 (IL-6) signaling
pathways are key features of LC.

Results
Proinflammatory pathways are persistently upregulatedin LC
We evaluated samples from 142 participants who were enrolled in an
observational cohort of the Massachusetts Consortium for Patho-
gen Readiness (MassCPR) and Beth Israel Deaconess Medical Center
(BIDMC) in Boston between April 2020 and October 2021 (hereafter
the 2020-2021 cohort). This cohortincluded UCs (uninfected; n = 35),
acutely infected individuals less than 30 days after COVID-19 infection
(acute; n=54), CCs (n=24) and patients with LC (n=28) (Table 1 and
Supplementary Table 1). Clinical symptoms in the LC group included
primarily shortness of breath, brain fog, fatigue, pain, cough and
abnormal smell and taste (Fig. 1a), which is consistent with prior
reports®'®?*3%3540_peripheral blood mononuclear cells (PBMCs) were
collected during the acute phase (<30 days) (LC:n=6;CC:n=5),90-180
days (LC:n=26;CC:n=21)and morethan180days(LC:n=21;CC:n=5)
after SARS-CoV-2 infection. Plasma samples were also collected dur-
ing the acute phase (LC: n=8; CC: n=4),90-180 days (LC: n=22; CC:
n=_8)and more than 180 days (LC: n=19; CC: n = 6) after SARS-CoV-2
infection. We performed immunological and virological assays, bulk
RNA sequencing (RNA-seq) and plasma proteomics.

Assessment of SARS-CoV-2 neutralizing antibody (nAb)
responses using luciferase (LUC)-based pseudovirus neutralization
assays and T cell responses using pooled peptide interferon-y (IFNy)

enzyme-linked immunospot (ELISpot) assays against SARS-CoV-2
WA1/2020, Delta and Omicron BA.1in the CC and the LC groups did
not detect differencesin SARS-CoV-2 nAb titers and identified a trend
toward higher Spike-specific IFNy ELISpot responses in the LC com-
pared with the CC group (Fig. 1b and Extended Data Fig. 1a-c). We did
not detect plasmaSARS-CoV-2 viralloads inany CCs or individuals with
LCusing PCR with reverse transcription genomic or subgenomic viral
load assays (Fig. 1c).

Bulk RNA-seqin PBMCs fromindividuals with LC (n =26) and CCs
(n=21) at day 90-180 and in uninfected (n =35) and acute (n=54)
individuals identified reads that mapped to the human genome and
multiple common viruses (SARS-CoV-2, varicella zoster virus, Western
equine encephalitis virus, Epstein-Barr virus, human cytomegalovirus,
herpes simplex virus 1 and 2, influenza virus, rotavirus). We did not
detect significant differences in viral read counts for these common
virusesin the LC compared with the CC group (Extended Data Fig.1d).
Unsupervised clustering of bulk RNA-seq transcriptomic datarevealed
a distinct stratification between the LC group and the other cohorts,
whereas the CC group clustered with the UCs (Fig. 1d). Differential
bulk RNA-seq gene expression analysis in PBMCs across these groups
showed upregulation of multiple proinflammatory markers in the LC
compared with the CC group and uninfected individuals, including
chemokines and cytokines (CXCL2, CXCL3, CCL3,1L10, IFNG, IL6, TNF,
IL1B, IL1A, NFKBIZ), the NLRP3inflammasome and the complement and
coagulation genes C5, F3and THBSI (Fig. 1e,f). In contrast, downregu-
lation of activating (for example, KLRC2) and inhibitory (for example,
KLRCI,KIR3DL2) natural killer (NK) cell receptors and T cell activation
markersin the LC compared to the CC group was observed (Fig. 1f).

Analysis of differentially expressed genes in the LC group com-
pared with the CC group at day 90-180 after infection identified an
increase of multiple proinflammatory markers, such as /L6, NLRP3,
TNF,JAK2, CSF2,IL1B and IL10, in the LC compared with the CC group
(Fig. 2a). Pathway enrichment analysis revealed upregulation of sig-
natures associated with signaling by proinflammatory cytokines such
as IL-6, IFNa, IFN and IFNy, JAK-STAT pathways, complement and
coagulation cascade, metabolic pathways and immune cell signatures
of monocytes, macrophages, neutrophils and dendritic cells (Fig. 2b),
while RNA processing and nitrogen metabolism, oxidative stress and
aminoacid transport, were decreased in the LC compared with the CC
group (Fig.2b). Additionally, transcriptomic signatures of T cell activa-
tionand differentiation (CD28, ICOS, TCF7) were downregulatedin the
LC compared with the CCgroup at day 90-180 after infection (Fig. 2b),
while CD8" T cell exhaustion signatures and programmed cell death
protein 1 (PDCDI) signaling-associated genes (/F/44, PRDMI1, NR4A3,
NFKBIA, MAFF) were significantly increased in the LC group (Fig. 2¢),
suggesting a potential role of T cell dysregulationinthe pathogenesis
of LC. Moreover,JAK1, JAK-STAT and IL-6 signaling pathways correlated
inversely with T cell activation and positively with CD8" T cell exhaus-
tion and PD-1signaling (Extended Data Fig. 2a). Signatures of T cell
activation and differentiation were positively correlated with IFNy
ELISpot responses, whereas proinflammatory signaling and immune
exhaustion signatures were negatively correlated with IFNy ELISpot
responses (Extended Data Fig. 2b). We observed a significant correla-
tion between IL-6 and JAK-STAT signaling pathways with complement
and coagulation pathways, metabolic signatures and PD-1signaling
inthe LC group (Fig. 2d), suggesting a potentially coordinated role of
these pathwaysin the pathogenesis of LC, while the IL-6 and JAK-STAT
signaling pathways correlated negatively with the metabolism of amino
acidsand oxidative stressinthe LC group (Fig.2d).IFNy, IL-6,JAK-STAT
and T cell exhaustion pathways correlated with clinical symptoms in
the group with LC, including fatigue, shortness of breath and cognitive
complaints (Fig. 2e).

Toinvestigate the timing of the chronicinflammatory pathwaysin
theLCgroupinfiner detail, we performed gene set enrichment analysis
(GSEA) using blood samples collected at less than 30 days (LC, n=6;
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Fig. 1| Immunological and virological profiling of the 2020-2021 cohort.
a, Symptom prevalence inindividuals with LC (n = 28) and individuals who
recovered (CCs, n=24) inthe 2020-2021 cohort. b, log,,-transformed nAbs

Medians (red bars) are shown for each group. Samples from several time
points were assessed for participants with LC. d, K-mean clustering across
acute COVID-19 (n=54), LCs (n=28), CCs (n = 24) and uninfected (NC) (n = 35)

titers and IFNy (ELISpot responses against the WH/2020, Deltaand BA.1
variants of SARS-CoV-2) in CC (n=9) and LC (n = 41) individuals on day 90-180
after infection. The dots are individual participants and the red bars are group
medians. Samples from several time points were assessed for participants
with LC. ¢, Quantification of SARS-CoV-2 genomic (N, E) and subgenomic
(Nsingle-guide RNA (sgRNA), EsgRNA) RNAin CCs (n=9) and LCs (n = 41).

individuals. All available samples were included in the k-mean analysis for the LC
and CC groups. e, Heatmap of top significant (P,q; < 0.05) proinflammatory genes
upregulated (red) or downregulated (blue) in LCs compared to CCs or NCs at day
90-180 after SARS-CoV-2 infection. f, Transformed log, fold change expression
ofthe top upregulated (pink) and downregulated (dark) genes in LCs compared
to CCsand NCs (P,4; < 0.05).
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Fig. 2| Transcriptomic differences between LC and CC groupsin the the top markersin the LC and CC group level for pathways of T cell activation,
2020-2021 cohort. a, Scatter plot of the upregulated (red) or downregulated T cell differentiation and CD8" T cell exhaustion. d, Correlation of the IL-6-JAK-
(blue) genesinthe LC group (n =26) compared with the CC (n =21) group at STAT3 signaling pathways with pathways upregulated or downregulated in the
day 90-180 after infection. b, Dot plots of the pathway normalized enrichment LC group. The red and blue lines indicate linear regression. The gray shading
scores (NES) in LC compared with CC at day 90-180 after infection. The dot size represents the 95% confidence interval (CI). Pvalues are indicated. e, Heatmap of
illustrates the normalized enrichment scores. The color gradients reflect the Spearman correlations between clinical symptoms and pathway activity levelsin
GSEA (FDR) g > 0.05. ¢, Heatmaps of the normalized z-score gene expression of the LC group at day 90-180 after infection.
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Fig. 3 | Persistent activation of IL-6 and JAK-STAT signaling pathways in
the 2020-2021 cohort. a,b, Upregulated IL-6, IL-6-JAK-STAT3, JAK-STAT and
JAKl1signaling pathways at day 90-180 (a) and more than 180 days (b) after
SARS-CoV-2infection in the LC group compared with the CC group. The top
genes driving the enrichment of each pathway are shown in the red circles.

The x axis represents each gene’s rank in the gene list, while the y axis shows the
corresponding gene rank metric score. ¢, Gene interaction network analysis
showing the top leading genes for the IL-6 and JAK-STAT signaling pathways.
The edges represent the Spearman correlation between genes (P < 0.05). Hub
genes with a high number of correlated genes are represented by larger circles.

CC,n=35),day30-100 (LC,n=7;CC,n=4),day 100-200 (LC, n=22;
CC,n=5)and day 200-300 (LC, n=22; CC, n = 6) after infection from
individuals with LC and CCs. We observed upregulation of proinflam-
matory pathways associated with IL-1, IL-6,JAK-STAT, IFN signaling, cell
cycle, metabolic pathways, complement activation and T cell exhaus-
tion pathwaysinthe LC group by day 30, withincreased and sustained
effects for over 200 days (Extended Data Fig. 3). Pathways associated
with IL-6, JAK-STAT and JAK1 signaling were upregulated at both day

90-180 (Fig. 3a) and more than 180 days (Fig. 3b) in the LC group
comparedtothe CC group, as highlighted by the persistentincrease of
several leading genes in the pathways, including /L6R, IL6,ILIR, CD14,
CSF1, CSF3RLEPR, IL4R, STATI1, STAT3 and JAK2 (Fig. 3a,b). Weighted
gene correlation network analysis revealed thatindividual markers of
the JAK-STAT and IL-6 signaling pathways, including IL6R, AKT1,JAK2,
IL1B,IFNGRI and IFNGR2 and CD14 were highly correlated and positively
associated with the subsequent development of LC (Fig. 3c).
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Table 2 | Description and demographics for the
2023-2024 cohort

CCs(n=20) LCs (n=18)
Median: 48 Median: 565.5
Age 95% Cl 95% Cl
(40.53-55.47) (48.16-62.84)
Sex at birth
Male 9 (45%) 4(22.2%)
Female 11 (55%) 14 (77.7%)
Ethnicity
Asian 0 (0%) 0 (0%)
Black 0 (0%) 0 (0%)
White 0 (0%) 0 (0%)
Hispanic 2 (10%) 3(16%)
Not Hispanic or Latino 18 (90%) 15 (83%)
Race
White 19 (95%) 15 (83%)
Native Hawaiian or other Pacific Islander 0 (0%) 1(0.05%)
Other 0 (0%) 1(0.05%)
Multiracial 0 (0%) 1(0.05%)
Black or African American 1(0.05%) 0 (0%)
Median: 286 Median: 420
Number of days to first COVID* 95% Cl 95% Cl

(213.63-358.37)  (239.66-600.34)

Vaccine

Moderna

Pfizer ND ND

Unknown

No vaccine

We also performed proteomics analysis on plasma from the LC
(n=22)and CC (n=8)groupsatday90-180 (Fig.4aand Supplementary
Table 2). We observed increased levels of plasma cytokine signaling,
including JAK-STAT (STATS, STAT1, IL6ST, SOS1, RELB), IL-6, NF-kB
signaling, complement and coagulation cascades (TMPRSS6, F8, C9,
C1S, F9,C6, CIR, FN1), metabolic pathways (PTPN11, LEPR, PTEN, EIF4E)
and corticotropin-releasing hormone and leptin signaling (TCF4,
PRKCA, PRKCB, PLCG1) in the LC group compared to the CC group at
day 90-180 after infection (Fig. 4a), while DNA damage repair (RADSI1C,
RADS51D, HUS1, MSH2,RPA2, PARP1, YY1, CETN2), cytotoxic T cell (DFFA,
BCL2,FADD, B2M, CD3G, HLA-E,CD247,HLA-G, BID), telomere mainte-
nance (PCNA, PRIM1, TEN1, RUVBL1, RPA2) and amino acid metabolism
(GNMT, PDHB, DLD, AMT, PDHA2, BHMT2, GOT1, MRI1, GOT2, MTAP,
CTH) were decreasedin the LC group compared to the CC group at day
90-180 after infection (Fig. 4a). Furthermore, the plasma JAK-STAT
signaling pathways by proteomics correlated positively with plasma
proinflammatory signatures such as the NF-kB signaling pathway,
complement activation, leptin signaling and corticotropin-releasing
hormone signaling, and correlated negatively with plasma DNA dam-
age repair, cytotoxic T cell and granzyme B signaling in the LC group
(Fig. 4b,c). These data indicated that LC is associated with chronic
inflammation, as well asimmunological and metabolic dysregulation.

Inflammation during acute infection predicts the
development of LC

To evaluate whether activation of proinflammatory pathways during
acute COVID-19infection correlated with the subsequent development

of LC, we performed an exploratory analysis of transcriptomic and
proteomic changes in the subset of participants in this cohort (LC:
n=8;CC:n=5)whohad PBMC and plasmasamples both duringacute
COVID-19 (< 30 days) and at day 90-180 after infection. Transcriptomic
profiling of PBMCs indicated that acutely infected participants who
subsequently developed LC had higher levels of proinflammatory
pathways such as IFN and IFNy, JAK-STAT and IL-6 signaling, as well as
innateimmune cell signatures of monocytes neutrophils and comple-
ment and coagulation cascades (CCL3, CCL20, CD160, F13A1, F3, IL6,
NR4A1, NLRP3, THBS1) during acute infection compared with acutely
infected patients who fully recovered (CCs) (Extended Data Fig. 4a,b).
Plasma proteomics profiling validated the significant increase of
proinflammatory pathways (IL-6 signaling, complement cascade,
leptin signaling pathway) during acute infection in participants who
subsequently developed LC compared to those who recovered (CC)
(Extended Data Fig. 4c,d).

To explore further the potential association between early acti-
vation of proinflammatory pathways during acute infection and the
subsequent development of LC, we used a supervised random forest
(RF) algorithm toidentify key blood and plasma features during acute
infection that predict the development of LC. This model revealed
that gene expression and protein levels of complement activation,
proinflammatory response, JAK-STAT, IL-6, IL-6-JAK-STAT3, IFNf3 and
IFNy signaling pathways during acute infection were among the top
predictors for the development of LC (Extended Data Fig. 4e,f). A fea-
tureimportance analysis revealed upregulation of the IL-6 and JAK-STAT
signaling, corticotropin-releasing hormone, IL-10 and TNF signaling
pathways during the acute phase were among the top predictors for
the development of LC. Together, these observations suggested that
early activation of proinflammatory pathways strongly predicted LC
development based on gene and protein profiling.

Proinflammatory pathways are upregulatedina

validation cohort

To confirm our findings in an independent cohort with LC, we per-
formed transcriptomics profiling of peripheral blood samples col-
lected on days 15-700 after infection fromindividuals with LC (n =18)
and CCs (n=20) who were enrolled at the BIDMC clinical site of the
National Institutes of Health (NIH) RECOVER prospective clinical trial
between October 2022 and December 2024 (hereafter the 2023-2024
cohort) (Table 2 and Supplementary Table 3). All study participants had
standardized clinical meta-data and responded to structured symptom
questionnaires* (Extended DataFig. 5a,b and Supplementary Table 3).
Pain, neurological symptoms, brain fog, fatigue and cough were the pri-
mary symptoms that were more frequentinthe LC compared withthe
CCgroups (Fig. 5a). Transcriptomic analysis of peripheral blood in the
LC(n=10)and CC (n=12) groups at day 90-180 afterinfectionindicated
upregulation of pathways linked to proinflammatory cytokine signaling
(IL-6,IL-10 and IL-12 signaling), complement activation, proinflamma-
toryimmune cell signaling, signatures of T cell exhaustion and certain
metabolic and immune regulation pathways in the LC compared with
the CC group (Fig. 5b). In contrast, pathways associated with mito-
chondrial function, amino acid metabolism and signatures of NK cells,
T cells and B cells were downregulated in the LC compared with the CC
group (Fig. 5b). Inline with observations from the 2020-2021 cohort,
theIL-6,JAK-STAT and JAK1signaling pathways remained persistently
upregulated in the LC group both at day 90-180 and more than 180
days compared to the CC group (Extended Data Fig. 5¢,d).

We used enzyme-linked immunosorbent assay (ELISA) and
Meso Scale Discovery (MSD) assays to evaluate the plasma levels
of selected proinflammatory markers at day 90-180 (LC, n=19; CC,
n=13), morethan180 days (LC,n=19;CC,n=13)and UCs (n=13) in
the 2023-2024 cohort (Fig. 5c,d and Extended Data Fig. 6). Plasma
levels of IL-6R were significantly elevated in the LC group compared
tothe CCand UC groups at day 90-180 and more than 180 days using
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ELISA (Fig.5c) and MSD (Fig. 5d), suggesting a link between chronic
inflammation and LC%'*'¢3,

We next combined data from the 2020-2021 and 2023-2024
cohorts and performed an RF analysis using the gene expression pro-
files at day 90-180 and day 180-365 after infection to define the path-
ways that correlated most robustly with LC compared with CC. For
each time point, RF models were trained using gene sets correspond-
ing to individual pathway modules, and performance was evaluated
using receiver operating characteristic (ROC) curves and area under
the curve (AUC) metrics. Pathways related to IL-6, JAK-STAT, IFNy,

proinflammatory response, antigen presentation and activation,
and complement cascade were the top pathways associated with LC
status at day 90-180 (Fig. 6a) and day 180-365 (Extended Data Fig. 7).
Individual markers within the IL-6 and JAK-STAT signaling pathways,
includingJAK1, PIK3, CXCL8, BCL2L1, OSM, MAP3K8 and STAT3were the
top genes associated with LC (Fig. 6b).

Finally, in an exploratory sex-stratified analysis at day 90-180
after infection, using transcriptomic profiling in peripheral blood
in the combined cohort, females with LC (n =29) showed stronger
enrichment of inflammatory pathways than females who recovered
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Fig. 5| Transcriptomic differences between LC and CC groups in the
2023-2024 cohort.a, Symptom prevalence in individuals with LC (n =18) or
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of NESin LC compared to CC groups at day 90-180 after SARS-CoV-2 infection.
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(CC, n=14), including monocyte signatures, proinflammatory
cytokine/chemokine signaling, complement and coagulation cas-
cades, IL-6,JAK1, JAK-STAT signaling, and T cell exhaustion (Extended
DataFig.8a).IntheLC group, these pathways were generally higher in
females than males (Extended Data Fig. 8b), whereas no significant sex
differences were detected within the CC group (Extended DataFig. 8c).
These data demonstrate persistent activation of proinflammatory
pathwaysinavalidation LC cohort, with possibly greater inflammation
infemales compared with males, although these observations require
confirmationin larger studies.

Discussion

Inthis study, we found that individuals with LC were characterized by
persistentactivation of chronicinflammatory pathways compared with
CCs. These pathways included proinflammatory cytokine signaling,
complementactivation, metabolic dysregulation and immune exhaus-
tionand persisted for more than 180 days. These findings suggest that
chronic inflammation may contribute to the pathogenesis of LC and
define potential new therapeutic targets.

We observed that participants with LC exhibited reduced gran-
zyme B and cytotoxic T cell signaling and increased immune exhaus-
tion, suggesting dysregulated cross-talk between the innate and
adaptiveimmune responses™***2, Our findings are consistent with prior
reportsthatthelL-6 and JAK-STAT signaling pathways were upregulated
inindividuals with LC****** particularly in those with cardiorespiratory
or multisystem symptoms. We also found that chronic upregulation of
IFNy signaling was associated with LC and correlated with signatures of
reduced T cell activation and increased T cell exhaustion, suggesting
that chronic immune stimulation may lead to functional impairment
of T cells. These findings are consistent with prior observations** and
suggest the potential role of T cell dysregulation and exhaustionin LC
pathogenesis.

Our study also confirms and extends prior reports of metabolic
dysregulation in LC"101219222630.33 'we observed a decrease in amino
acid metabolism and an increase in corticotropin-releasing hor-
mone signaling, leptin signaling, fatty acid metabolism, bile acid and
beta-alanine metabolism in LC. Moreover, these metabolic pathways
correlated with proinflammatory pathwaysinthe LC group, suggesting
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alinkbetween metabolic dysregulationand chronicinflammation. We
also observed decreased activity of the telomere maintenance and
DNA damage recognition and repair pathways, chromatin regulation
and DNA methylationin the LC group. Impaired telomere maintenance
could be associated with premature cellular senescence or apoptosis
that may impede tissue repair processes**®.

Our study is limited by relatively small cohorts of individuals with
LC who were predominantly female and with symptom clusters that
primarily involved fatigue, brain fog and pain. Larger studies from
more diverse populations will be required to assess the generaliz-
ability of our findings. Nevertheless, we observed good concordance
between the 2020-2021 initial cohort and the 2023-2024 validation
cohort. Another limitation is the use of bulk RNA-seq, which limits
more detailed resolution of pathways at the cellular level. Therefore,
future studies should use single-cell transcriptomic and T cell profil-
ing technologies to provide higher-resolution data. Nevertheless, our
observations suggest potential therapeutic targets for LC that could
be explored in clinical trials. Because the IL-6 and JAK-STAT pathways
were among the top upregulated pathways in participants with LC in
both the 2020-2021 and the 2023-2024 cohorts, we have initiated a
clinical trial to evaluate the therapeutic efficacy of the JAK1 inhibitor
abrocitinib for LC (NCT06597396).

In conclusion, our data demonstrate that LC is characterized by
chronicinflammation, immune exhaustion and metabolic dysregula-
tion. Current therapeutic efforts are largely focused onantiviral agents
to address potential residual viral replication. However, the lack of
efficacy of nirmatrelvir-ritonavir in treating LC highlights the need to
explore alternative therapeutic strategies®. Our datasuggests that the
JAK-STAT and IL-6 pathways, and the IFN and metabolic pathways, are
potential therapeutic targets that could be evaluated for LC.
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Methods

Clinical cohorts

The 2020-2021 cohort samples were collected between April 2020
and October 2021 as part of the MassCPR COVID-19 biorepository. This
discovery cohort of 142 individuals included UCs (n = 35, 51% female
and 49% male), acutely infected individuals (n = 54, 50% female and
50%male), CCs (n =24, 60% female and 40% male) and patients with LC
(n=28,86% female and 14% male). Samples were collected during the
acute phase (< 30 days after infection) and during the chronic phase
between 30 and 300 days after infection.

The2023-2024 validation cohort samples were collected between
October2022 and December 2024 as part of the BIDMC biorepository
jointly with the BIDMC clinical site of the NIH RECOVER study with
the complete clinical meta-data and structured symptom question-
naires. This validation cohort of 38 individuals included CCs (n =20,
55% female and 45% male) and patients with LC (n =18, 78% female and
22% male). Samples were collected during the acute phase (<30 days
after infection) and during the chronic phase between 30 and 700
days after infection.

Symptoms in the 2020-2021 cohort were self-reported, whereas
symptomsinthe2023-2024 cohort were collected with the RECOVER
standardized symptom questionnaire. All samples were collected
as part of the MassCPR, RECOVER and BIDMC biorepository studies
with institutional review board approval and participant informed
written consent. De-identified and cryopreserved samples were used
inthis study.

NAb assay

ThenAb titers against the SARS-CoV-2 variants were determined using
pseudotyped viruses expressing a LUC reporter gene. In brief, a LUC
reporter plasmid pLenti-CMV Puro-Luc (Addgene), the packaging
construct psPAX2 (AIDS Resource and Reagent Program) and Spike
protein expressing pcDNA3.1-SARS-CoV-2 SACT were cotransfected
intohuman HEK 293T cells (CRL-3216, ATCC) with lipofectamine 2000
(ThermoFisher Scientific). Pseudotyped viruses of the SARS-CoV-2 vari-
ants were generated using the Spike protein from WA1/2020 (Wuhan/
WIV04/2019, GISAID accession ID: EPI_ISL_402124), B.1.617.2 (Delta,
GISAID accession ID: EPI_ISL_2020950) and Omicron BA.1 (GISAID
accession ID: EPI_ISL_7358094.2). Forty-eight hours after transfection,
the supernatants containing the pseudotyped viruses were collected
and purified using filtration with 0.45-um filter. To determine nAb titers
in human sera, HEK-293T-hACE2 cells were seeded in 96-well tissue
culture plates atadensity of 2 x 10* cells per well overnight. Three-fold
serial dilutions of heat-inactivated serum samples were prepared and
mixed with 60 pl of pseudovirus and incubated at 37 °C for 1 h before
addingto the HEK-293T-hACE2 cells. Forty-eight hours later, cells were
lysedin Steady-Glo Luciferase Assay (Promega Corporation) according
to the manufacturer’s instructions. SARS-CoV-2 neutralization titers
were defined as the sample dilution at which a 50% reduction (NTs,)
inrelative light units was observed relative to the average of the virus
control wells. Titers greater than 1:20 were considered positive.

IFNy ELISpot assay

Cellular immune responses specific to SARS-CoV-2 were assessed
using IFNy ELISpot assays using pools of overlapping 15-amino-acid
peptides for the Wisconsin delta and omicron variants (21st Century
Biochemicals). Ninety-six-well multiscreen plates (Merck Millipore)
were coated with 1 pg per well of mouse antihuman IFNy (MabTech)
overnight in endotoxin-free Dulbecco’s PBS (DPBS) overnight at
4 °C. Plates were washed with DPBS three times and blocked using
Roswell Park Memorial Institute 1640 media containing 10% FCS for
2-4 hat 37 °C. Peptides pools were prepared at a concentration of
2 pg per well, and 200,000 cells per well were added. Peptides and
cellswereincubated for15-20 hat 37 °C. The plates were washed with
DPBS-Tween seven times and then incubated with 1 pg ml™ per well of

biotinylated antihuman IFNy (MabTech) for2-4 hat room temperature,
followed by four washes with DPBS-Tween and 1.33 pg ml™ per well of
alkaline phosphatase-conjugated anti-biotin (Rockland) for 2-3 h at
roomtemperature. Plates were developed with nitroblue tetrazolium
-5-bromo-4-chloro-3-indolyl-phosphate chromogen (Pierce), stopped
by washing with tap water, and read using an ELISpot reader (KS ELIS-
POT Reader, Carl Zeiss). The number of spot-forming cells per 10 cells
were calculated, subtracted over background (PBMCsincubated with
medium and dimethylsulfoxide without peptide).

Bulk RNA-seq

PBMCs were lysed in 700 pl of TRIzol and then extracted using the
miRNeasy Mini Kit (QIAGEN) with on-column DNase digestion. RNA
quality was assessed using a TapeStation 4200 (Agilent Technologies)
andthen 10 ngof total RNA was used asinput for complementary DNA
(cDNA) synthesis using the Clontech SMART-Seq v4 Ultra Low Input
RNA Kit (Takara Bio) according to the manufacturer’s instructions.
Amplified cDNA was fragmented and appended with dual-indexed
barcodes using the Nextera XT DNA Library Preparation Kit (Illu-
mina). Libraries were validated using capillary electrophoresis on a
TapeStation 4200, pooled at equimolar concentrations and sequenced
with PE100 reads on an Illumina NovaSeq 6000, yielding ~30 million
reads per sample on average. Alignment was performed using STAR
v.2.7.3a¥; transcripts were annotated using acomposite genome refer-
ence thatincluded the GRCh38 Ensembl release 100 and SARS-CoV-2
(GCF_009858895.2, ASM985889v3, MN985325.1). Transcript abun-
dance estimates were calculated internal to the STAR aligner using
the htseq-count algorithm. Transcript abundance estimates were
calculatedinternal tothe STAR aligner using the htseq-count algorithm.
DESeq2 (ref. 48) was used for normalization, producing a normalized
read count.

To assess for viral transcription, sample reads were aligned to a
reference of 59 complete viral genome sequences using the Burrows—
Wheeler Aligner (v.0.7.17)* to produce a sorted alignment (.bam) file.
SAMtools (v.1.3.1) was used to summarize the number of reads aligned
to each genome. The complete FASTA file is provided along with the
bulk RNA-seq raw data.

Plasma proteomics

A total of 55 ml serum or plasma from all participants, five pooled
plasma controls and one buffer control were analyzed using the Somas-
can Assay Kit for human plasma V4.1 (cat. no.900-00020), measuring
the expression of 6,596 unique human protein targets using 7,596 slow
off-rate modified aptamer reagents (SOMAmer), single-stranded DNA
aptamers, according to the manufacturer’s standard protocol (Soma-
Logic). The modified aptamer binding reagents, SomaScan assay, and
its performance characteristics and specificity to human targets, have
beendescribed previously. The assay used standard controls, including
12 hybridization normalization control sequences used to control for
variability in the Agilent microarray readout process, and five human
calibrator control pooled plasmareplicates and three quality control
(QC) pooled replicates used to mitigate batch effects and verify the
quality of the assay run using standard acceptance criteria. The readout
was performed using the Agilent microarray hybridization, scan and
feature extraction technology.

Twelve hybridization control SOMAmers were added alongside
SOMAmers to be measured from the serum samples and controls of
each well during the SOMAmer elution step to control for readout
variability. The control samples were run repeatedly during assay
qualification and robust point estimates were generated and stored as
references foreach SOMAmer result for the Calibrator and QC samples.
The results are used as references for the SomaScan v.4.1 Assay. Plate
calibration was performed by calculating the ratio of the calibrator
reference relative fluorescence unit (RFU) value to the plate-specific
calibrator replicate median RFU value foreach SOMAmer. The resulting
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ratio distribution was decomposed into a plate scale factor defined
by the median of the distribution and a vector of SOMAmer-specific
calibration scale factors. Normalization of QC replicates and sam-
ples was performed using adaptive normalization by maximum likeli-
hood with pointand variance estimates from anormal US population.
Post-calibration accuracy was estimated using the ratio of the QC refer-
ence RFU value to the plate-specific QC replicate median RFU value for
eachSOMAmer. Theresulting QC ratio distribution provides arobust
estimate of accuracy foreach SOMAmer onevery plate. SomaScan RFU
values and clinical information were obfuscated to protect personally
identifiable information while preserving biologically relevant bio-
markers. These reference datasets were provided by SomaLogic. We
used the limmaR package to identify differentially expressed proteins
in the LC and CC groups. The method involves fitting a linear model
to the data and then performing a ¢-test to identify proteins that are
differentially expressed between two or more groups. P values were
corrected for multiple testing using the Benjamini-Hochberg method.
TheR packages ggplot2 and ComplexHeatmap were used to generated
the figures. Pathway enrichment analysis was performed using GSEA
(https://www.gsea-msigdb.org/gsea). Genes were preranked accord-
ing to the fold change from the highest to the lowest; GSEA was used
to assess the enrichment of selected gene sets. Cytokine signaling,
immune cell signatures and molecular pathways were compiled from
the MSigDB Hallmark, C2, C7 and C3 gene sets (www.gsea-msigdb.
org/gsea/msigdb/collections.jsp) and the blood transcriptional
modules. The GSEA Java desktop program was downloaded from the
Broad Institute (www.broadinstitute.org/gsea/index.jsp) and used
with GSEA preranked module parameters (number of permutations:
1,000; enrichment statistic: weighted; 10 < gene set size < 5,000).
Sample-level enrichment analysis®® was used to investigate the enrich-
ment of pathways in each animal. Briefly, the expression of all genes
in a specific pathway was averaged across samples and compared to
the average expression of 1,000 randomly generated gene sets of the
same size. The resulting z-score was then used to reflect the overall
perturbation of each pathway in each sample.

SSGSEA

Weestimated pathway activity per sample using ssGSEA®. Leading-edge
gene lists were parsed from the prior GSEA output and used as the gene
sets for each pathway. For every sample, genes were ranked according
to normalized expression and an enrichment score was computed as
the difference between the empirical cumulative distributions of ranks
for leading-edge genes versus all other genes; higher scores indicate
greater pathway activation. Scores were normalized (per sample and
then z-scored across samples) to enable comparisons, yielding asam-
ples x pathways ssGSEA matrix for the downstream analyses.

Gene expression correlation analysis between symptoms and
pathway scores

To explore associations between symptom presence and gene expres-
sion signatures, we merged the one-hot symptom mapping with the
original cohort data containing pathway-level gene expression profiles.
For each of the 18 symptom categories, we thenidentified all patients
who had that symptom and averaged their gene expression values
across all measured pathways. In other words, for each symptom like
fatigue or brainfog, welooked at all the patients who had that symptom
and calculated the average expression level of each gene pathway in
that subgroup. This produced an 18 x nmatrix (where nis the number
of gene pathways), with each cell representing the average expression
in patients with that symptom. The resulting correlation matrix was
visualized using a heatmap with color mapping reflecting average
expression levels. This can be formally represented as:

1
Cix= 7] > Gix

i€y

Where C;, is the average expression of gene pathway (k) for symp-
tom ()), §;is the set of patients with symptom (j) and G, is the expression
value of gene pathway (k) for patient (i).

ELISA

Cytokines were assessed using ELISA. An antihuman cytokine coating
antibody was adsorbed onto 96-microwell plates. Microwells were
washed with wash buffer; human serum samples and human cytokine
standards were prediluted in assay bufferand added to each plate. Plates
were then incubated for 1 h before adding antihuman cytokine horse-
radish peroxidase (HRP). After an additional 1-hincubation, plates were
again washed with wash buffer. SeraCare KPL TMB SureBlue Start solu-
tion was added to each well; plate development was halted by adding
SeraCare KPL TMB Stop solution to each well. Absorbance at 450 nmwas
recorded withaVersaMax Microplate Reader (Molecular Devices). The
standard curve was prepared from human cytokine standard dilutions
and the human cytokine concentration was determined. For each sam-
ple, the cytokine concentration was calculated using afour-parameter
logistic curvefit; cytokine concentrations of the unknown samples were
interpolated from the linear portion of the standard curve generated
from the human cytokine standards of known concentration.

MSD

Serumlevels of humanIL-6R were tested using the R-PLEX Human IL-6R
Kits from Meso Scale Discovery (cat. no. K1510GR-2) by the Metabolism
and Mitochondrial Research Core (BIDM) according to the manufac-
turer’s instructions. Briefly, the plate was coated using the provided
biotinylated capture antibody (1:100 dilution). The highest Calibrator
standard is 2,000 pg mI™. Then a fourfold serial dilution was done to
generate seven calibrator curve using a four-parameter logistic model.
The detection limit is 0.4 pg ml™. Samples were thawed on ice and
diluted ata1:200 ratio using the Diluent 7 provided by the kit. The assay
plate was read by aMESO QuickPlex SQ 120 instrument and data were
analyzed using the Discovery workbench 4.0 software.

RF analysis

We applied ssGSEA, which transforms gene expression profiles into
enrichment scores for predefined gene sets (for example, pathways),
thereby producing amatrixin which each row corresponds toasample
and each column represents a pathway activity score. To assess the
contribution of individual pathways, we trained an RF classifier using
the ssGSEA scores as input features. The dataset was randomly splitinto
atraining set (70%) and a testing set (30%) using stratified sampling
to preserve the class distribution. The RF model was trained with 500
trees using the randomForest R package, where the outcome variable
was CLASS (LC or CC) and the predictors were the ssGSEA-derived path-
way scores. Model performance was evaluated using the held-out test
set, with classification accuracy and a confusion matrix computed to
assess prediction quality. To determine the relative importance of each
pathwayin predicting the LC outcome, we extracted the meandecrease
in Gini impurity (MDG) from the trained RF model. The MDG quanti-
fies how much each feature (pathway/gene) contributes to reducing
classification uncertainty. A scatter plot was created to display the
relationship between prediction accuracy and MDG for each pathway
using transcriptomic and proteomic pathways. We added bar plots
to visualize the top pathways/genes ranked according to importance
generated by the RF model. Each bar represents a pathway; its length
reflects its importance in the RF model. This plot highlights the most
influential pathways in distinguishing LC from CC based on ssGSEA
scores. All figures were generated using Rv.4.4.2, using standard visu-
alization packages for statistical and transcriptomic data analysis.

Statistical analyses
The data from the RNA-seq and proteomics were analyzed with RStu-
dio (v.4.4.0) in PRISM 9.0 (GraphPad Software). Pathways enrichment
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analysis was performed using the GSEA software. Sample-level ssGSEA
was performed using the GSVA (v.1.40) R package. The ssGSEA analysis
delineates acomparative exploration of the groups’ median values, vis-
ually represented through the datadistributionand median lines. Sta-
tistical significance, denoted by the calculated P value, is highlighted
above the comparisonline, wherea P < 0.05is considered statistically
significant. The two-sided Mann-Whitney U-test was used to identify
significant differences between groups. For more than one group
comparison, we used a Kruskal-Wallis test to compare all three groups;
when significant, we performed post hoc pairwise comparisons with
the Dunn’s test with Bonferroni correction for multiple comparisons.
nAb titers and IFNy ELISpot counts were analyzed after log,, trans-
formation; to avoid undefined values, measurements <1 were set to 1
before transformation. For each viral variant (WH/2020, Delta, BA.1),
CCand LCgroups were compared using atwo-sided Wilcoxon rank-sum
(Mann-Whitney U-test) test on the log;, values. Multiple testing across
variants within each assay (nAb and ELISpot analyzed separately) was
controlled usingthe Benjamini-Hochberg procedure; adjusted gvalues
arereported in the subpanel titles; nominal Pvalues are shown above
the parentheses. A nonparametric test was selected a priori because
immune readouts are typically right-skewed with potential outliers and
unequal variances, and the groups are independent. Individual data
and group medians are displayed inthe plots. Analyses were performed
inRusing the base wilcox.test with Benjamini-Hochberg adjustment.
Because of the limited sample availability, no statistical methods were
used to predetermine sample sizes and we used all the samples that
were made available to us. Where applicable, data distribution was
assumed to be normal but this was not formally tested.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data areavailable in the manuscript or the supplementary materials.
Transcriptomic raw data have been deposited in the Gene Expression
Omnibus under accession no. GSE226260.

Code availability

The analysis code, data preparation, stratified subject-level splitting,
RF training and ROC/AUC evaluation are available at https://github.
com/Barouch-and-BCGE-Labs/PASC-Project.
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