

Secondary infection in severe COVID-19 patients: clinical and microbial patterns at a tertiary hospital in Vietnam

Received: 1 October 2025

Accepted: 25 December 2025

Published online: 31 December 2025

Cite this article as: Anh P.H., Vinh C., Lan N.P.H. et al. Secondary infection in severe COVID-19 patients: clinical and microbial patterns at a tertiary hospital in Vietnam. *BMC Infect Dis* (2025). <https://doi.org/10.1186/s12879-025-12479-w>

Pham Hong Anh, Chau Vinh, Nguyen Phu Huong Lan, Ho Quang Minh, Le Thi Quynh Ngan, Huynh Phuong Thao, Mai Thu Si Nguyen, Nguyen Thanh Dung, Yeonji Jeon, Se Eun Park & Pham Thanh Duy

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Secondary infection in severe COVID-19 patients: Clinical and Microbial**
2 **Patterns at a Tertiary Hospital in Vietnam**

3

4 Pham Hong Anh¹, Chau Vinh¹, Nguyen Phu Huong Lan², Ho Quang Minh², Le Thi
5 Quynh Ngan², Huynh Phuong Thao², Mai Thu Si Nguyen¹, Nguyen Thanh Dung²,
6 Yeonji Jeon³, Se Eun Park^{3,4}, Pham Thanh Duy^{1,5*}

7

8 ¹ Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam

9 ² Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam

10 ³ International Vaccine Institute, Seoul, South Korea

11 ⁴ Yonsei University Graduate School of Public Health, Seoul, South Korea

12 ⁵ Center for Tropical Medicine and Global Health, Nuffield Department of Clinical
13 Medicine, Oxford University, Oxford, United Kingdom

14

15

16

17 **Keywords:** Secondary infection; COVID-19; multidrug resistance; XDR;
18 nosocomial infections.

19

20 *Corresponding Author: Dr. Duy Thanh Pham; email: duypt@oucru.org; phone:
21 +84.769606504. Address: 764 Vo Van Kiet, District 5, Ho Chi Minh City,
22 Vietnam.

23 **Abstract:**

24 **Background:**

25 COVID-19 predisposes patients to secondary infection, resulting in increased
26 mortality worldwide. It is thus crucial to identify the causes of secondary
27 infection and their clinical outcomes to devise future prevention and control
28 strategies. This study aimed to report the clinical and microbiological features of
29 bacterial and fungal secondary infections in severe COVID-19 patients during
30 the peak of the pandemic in Vietnam.

31 **Methods:**

32 We collected data from 3,789 confirmed COVID-19 patients hospitalized at the
33 Hospital for Tropical Diseases in Ho Chi Minh City between 2020 and 2021.
34 Demographics, infection pathogens, treatment characteristics, and patient
35 outcomes were recorded. Univariate and multivariate analyses were performed
36 to identify risk factors associated with mortality.

37 **Results:**

38 Microbiologically confirmed secondary infection was identified in 17.7%
39 (651/3,682) of hospitalized COVID-19 patients. The most frequent comorbidities
40 were cardiovascular diseases (74.9%), hypertension (65.9%), and diabetes
41 (54.5%). The overall survival rate was 83.5% (3,075/3,682), highest in patients
42 without secondary infection (97.2%), and dropped dramatically to 35.6% in
43 those with microbiologically confirmed secondary infection. Out of 2,649
44 pathogens identified, Gram-negative bacteria accounted for 53.8% of isolates,
45 followed by fungi (32.5%) and Gram-positive bacteria (13.7%). Notably, the
46 predominant bacterial (*A. baumannii*, *K. pneumoniae*, *P. aeruginosa*) and fungal
47 pathogens (*C. tropicalis*, *C. albicans*) exhibited high resistance rates to last-
48 resort antibiotics (carbapenems, colistin) and antifungal drugs (fluconazole),
49 respectively. Regression analyses found that secondary infection, older age,
50 chronic kidney disease, cardiovascular disease and mechanical ventilation were
51 the independent predictors of mortality.

52 Conclusions:

53 Secondary infection in COVID-19 patients was predominantly caused by highly
54 resistant Gram-negative bacteria, and was associated with older patients who
55 had comorbidities and underwent invasive procedures. Patients with secondary
56 infection experienced higher mortality. Our work underscores the need for
57 strengthening infection prevention measures and antibiotic stewardship
58 programs to prevent nosocomial infections and better prepare for future
59 epidemics.

60

61 **Introduction:**

62 Since the first report of COVID-19 in late 2019, the SARS-CoV-2 virus has spread
63 over the world, causing massive epidemics in many countries. As of mid-2024,
64 there have been more than 775 million confirmed cases of COVID-19, including
65 seven million deaths ¹. Similar to other respiratory viral diseases, COVID-19
66 predisposes patients to secondary infections such as bacteremia, nosocomial
67 pneumonia, urinary tract, and skin infection, particularly in critically ill cases
68 who need intensive care treatment ²⁻⁵. The prevalence of secondary infection
69 was reported as high as 24% in COVID-19 cases, which often leads to a
70 significant increase in fatality ^{3,6-8}.

71 Vietnam experienced four waves of the COVID-19 pandemic ⁹, during which the
72 country maintained a low number of cases in the first three waves. However, in
73 April 2021, the fourth wave saw a dramatic surge, with cases reaching nearly
74 10,000 per day at its peak ¹⁰. Ho Chi Minh City (HCMC) was the most heavily
75 impacted province, with over 443,000 cases, representing 41% of the total
76 cases in southern Vietnam ⁹⁻¹¹. During the peak of the pandemic between late
77 April and September 2021, the estimated infection and death rates of COVID-19
78 in HCMC were 3,723 per 100,000 population and 145 per 100,000 population,
79 respectively (<https://covid19.ncsc.gov.vn/dulieu>). This corresponded to a case
80 fatality ratio of about 4.2%, which was higher than the global average of ~2.2%
81 (<https://www.who.int/emergencies/diseases/novel-coronavirus-2019>, Accessed

82 May 7, 2021). The dramatic surge in COVID-19 patients significantly
83 overwhelmed the healthcare system and increased the risk of secondary
84 infection among hospitalized patients.

85 Although the global emergency phase of the COVID-19 pandemic has ended, a
86 thorough review of the causes and outcomes of secondary infection in COVID-19
87 patients is required for future preparedness and strategic response. In this
88 study, we report the occurrence and clinical outcomes of bacterial and fungal
89 secondary infections in COVID-19 patients who were hospitalized at the Hospital
90 for Tropical Diseases (HTD) in HCMC, Vietnam, during 2020-2021.

91 **Materials and methods:**

92 ***Study design and site***

93 We conducted a retrospective data extraction, curation, and analysis of the
94 hospital records of all COVID-19 patients admitted to HTD in HCMC from January
95 2020 to December 2021. HTD is the largest referral hospital for infectious
96 diseases in southern Vietnam, with approximately 660 beds and receiving over
97 2,500 outpatients per day. The hospital has served as a referral center for
98 severe COVID-19 cases in HCMC since the beginning of the pandemic. In June
99 2021, HTD was officially designated as a COVID-19 treatment facility for severe
100 patients in response to the peak of the pandemic in HCMC. During the height of
101 the pandemic, Vietnam implemented a three-tier COVID-19 treatment model to
102 avoid overwhelming of the healthcare system. The first tier provides care for
103 asymptomatic or mild patients, the second tier receives non-critical moderate-
104 to-severe patients who require oxygen supply and pneumonia treatment, and
105 the third tier, including HTD, is reserved for critically ill patients with severe
106 symptoms.

107 ***Definition of secondary infection in COVID-19 patients***

108 In this study, '**microbiologically confirmed secondary infection**' was
109 defined as a positive microbiological culture for at least one clinically relevant
110 pathogen (bacteria and/or fungi) from blood, urine, wound swab/pus, or
111 respiratory tract samples (sputum, bronchoalveolar lavage, pleural fluid,

112 endotracheal aspirate), that were collected after 48 hours of direct admission or
113 within seven days of transfer from another treatment facility ¹². COVID-19
114 patients with microbiological culture were performed after 48 hours of direct
115 admission or within seven days of transfer from another treatment facility, but
116 no microorganisms were found, and they were grouped into '**suspected**
117 **secondary infection**'. COVID-19 patients without indications for
118 microbiological culture were classified as '**no secondary infection**'.

119 A new episode of secondary infection was recorded if occurring at least seven
120 days between two consecutive microbiological isolations, including the same or
121 a different organism. Polymicrobial secondary infection was defined as
122 the isolation of more than one microorganism (including bacteria and fungi)
123 from the same or different clinical specimens during an episode.

124 ***Microbiological culture***

125 For blood culture, two to four bottles with 8-10 mL of blood per bottle for adults
126 and 2-5 mL for children were routinely obtained and inoculated into aerobic and
127 anaerobic blood culture bottles, which were subsequently incubated at $35\pm2^{\circ}\text{C}$
128 in BACT/ALERT VIRTUO (Bio-Mérieux, France) or BD BACTEC FX (Becton
129 Dickenson, USA) automated analyzer for up to five days. Sub-culture was
130 performed on fresh sheep blood, MacConkey, and chocolate agars when the
131 machine indicated a positive signal. Organisms were identified by MALDI-TOF
132 (Bruker, Germany) and Vitek 2 Compact (Bio-Mérieux, France) automated
133 identification and antimicrobial susceptibility test (AST) systems. For blood
134 culture, Coryneform (*Corynebacterium*, etc.), Coagulase-negative Staphylococci
135 (CoNS), Micrococci, Propionibacterium, Bacillus, alpha-hemolytic *Streptococci*,
136 environmental Gram-negative *Bacilli*, and non-pathogenic *Neisseria* were
137 regarded as contaminants from blood culture, unless isolated from two or more
138 separate blood culture sets ¹³.

139 For sputum culture, sample quality was assessed using Bartlett's grading
140 system ¹⁴, followed by plating onto selective media for bacterial isolation. For
141 tracheal aspirate (TA) and urine culture, samples were quantitatively plated
142 onto selective media, and bacterial identification and AST were performed for

143 known pathogens from TA with colony count $\geq 10^6$ cfu/mL and uropathogens
144 with colony count $\geq 10^5$ cfu/mL.

145 Multi-drug resistant (MDR), extensively-drug resistant (XDR), and pan-drug
146 resistant (PDR) bacteria were reported for the predominant bacterial and fungal
147 pathogens. For bacterial pathogens, MDR was defined as acquired non-
148 susceptibility to at least one agent in three or more antimicrobial classes, XDR
149 was defined as non-susceptibility to at least one agent in all but two or fewer
150 antimicrobial categories, and PDR was defined as resistance to all antibiotics ¹⁵.
151 The following antimicrobial categories or agents were used to distinguish MDR,
152 XDR, and PDR: ***Enterobacteriales***: aminoglycosides, carbapenems,
153 cephalosporins, cephamycins, ciprofloxacin/levofloxacin, trimethoprim-
154 sulfamethoxazole, fosfomycin, penicillins + β -lactamase inhibitors,
155 tetracyclines. ***Pseudomonas aeruginosa***: aminoglycosides, carbapenems,
156 cephalosporins, fluoroquinolones, polymyxins, penicillins + β -lactamase
157 inhibitors. ***Acinetobacter spp.***: aminoglycosides, carbapenems,
158 fluoroquinolones, extended-spectrum cephalosporins, trimethoprim-
159 sulfamethoxazole, tetracyclines, polymyxins, penicillins + β -lactamase
160 inhibitors. ***Staphylococcus aureus***: gentamicin, fluoroquinolones,
161 glycopeptides, tetracyclines, ansamycins, trimethoprim-sulfamethoxazole,
162 tigecycline, clindamycin, daptomycin, linezolid, fosfomycin, oxacillin,
163 macrolides/lincosamides. ***Enterococcus spp.***: fluoroquinolones, glycopeptides,
164 tigecycline, daptomycin, linezolid, tetracyclines, vancomycin, penicillins + β -
165 lactamase inhibitors.

166 ***Data collection:***

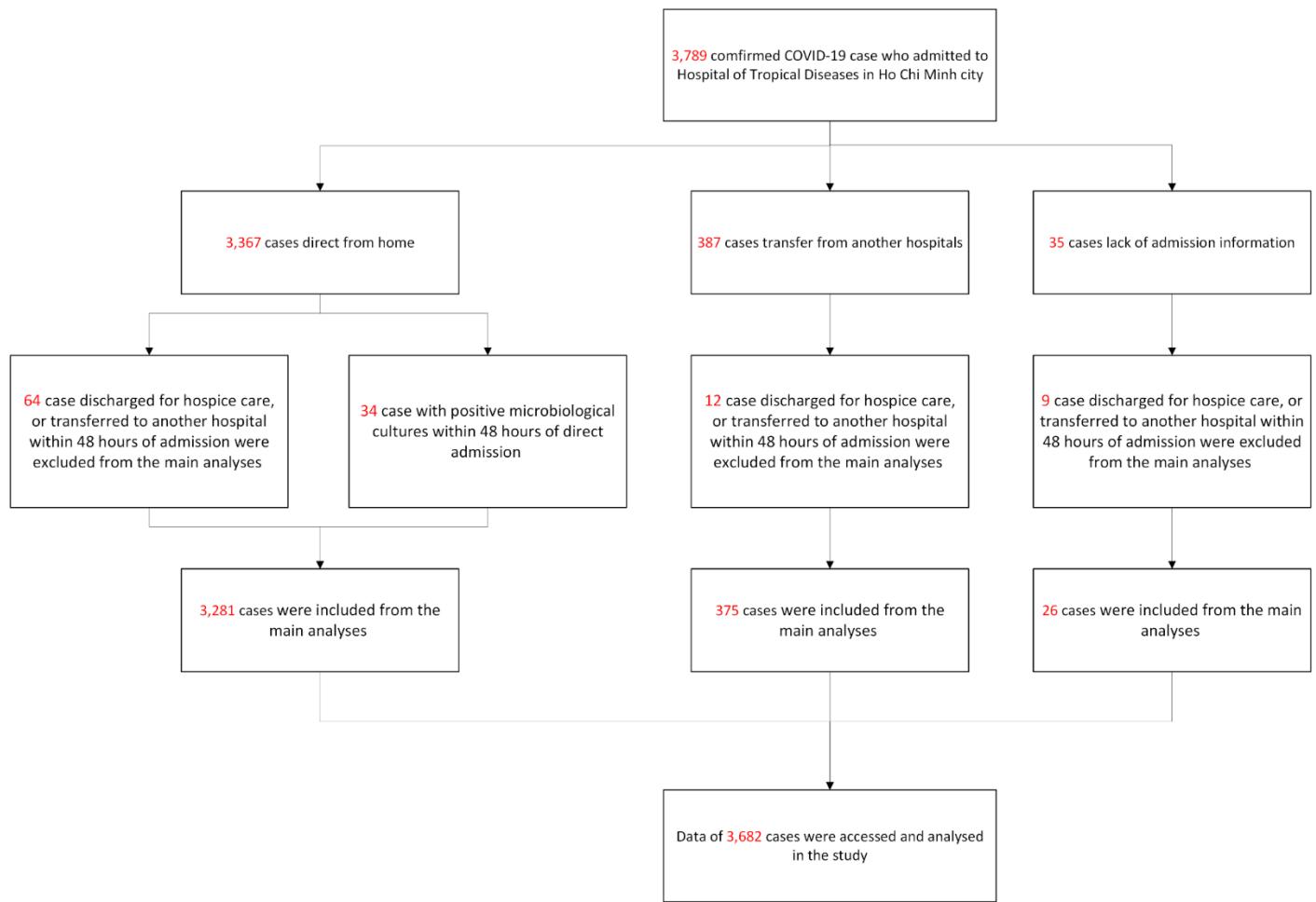
167 All available data were collected from the electronic medical records of HTD,
168 including basic demographic characteristics (i.e. age, sex, admission process),
169 clinical metadata (i.e., comorbidities, Intensive Care Unit (ICU) stay, length of
170 hospital stay, discharge outcome), treatment data (i.e., antibiotics, other
171 medications, oxygen therapy, Extracorporeal Membrane Oxygenation (ECMO),
172 hemodialysis, invasive procedures) and microbiological data (i.e., pathogens,

173 dates of sample collection and positive culture, place of sample collection,
174 clinical diagnosis, antimicrobial susceptibility results).

175 ***Statistical analysis:***

176 Descriptive statistics were entered in the form of median and proportion.
177 Continuous variables were presented as median (interquartile range, IQR), while
178 categorical variables were summarized with frequencies and percentages. The
179 univariate logistic regression model was conducted to assess the association of
180 mortality and the following variables: age, gender, comorbidities, supplemental
181 oxygen, other invasive procedures, length of hospital stays, and microbiological
182 culture results. The odds ratio (OR) and its corresponding 95% confidence
183 intervals (CI) were calculated to estimate the effect size of each variable. A
184 multivariate logistic regression model included variables significantly associated
185 with mortality from univariate analyses ($p<0.05$). Interval-censored time to
186 survival was compared between groups using a lognormal accelerated failure
187 time regression model. The distribution of time to survival was visualized using
188 the Kaplan - Meier curve. A p -value ≤ 0.05 was considered statistically
189 significant. All data analyses were performed using R Studio version 4.3.0.

190 **Results:**


191 ***Demographic characteristics of hospitalized COVID-19 patients***

192 Between 2020 and 2021, a total of 3,789 COVID-19 patients were admitted to
193 the hospital for inpatient care. In this study, we focused on secondary infection
194 that occurred after 48 hours of direct admission or within seven days of transfer
195 from another treatment facility. Consequently, patients with positive
196 microbiological cultures within 48 hours of direct admission (n=34), discharged
197 for hospice care, or transferred to another hospital within 48 hours of admission
198 (n=73) were excluded from the main analyses (Figure 1). Among 3,682 patients
199 included in the final dataset, 375 (10.3%) were transferred to HTD from
200 quarantine areas or another healthcare facilities. The prevalence of
201 microbiologically confirmed secondary infection was 17.7% (651/3,682), while

202 suspected secondary infection accounted for 16.6% (613/3,682) of patients and
203 65.5% were classified as having no secondary infection (Table 1).

204 The median age of patients was 54 years (IQR, 39–65). Those with
205 microbiologically confirmed secondary infections were older, with a median age
206 of 63 years (IQR, 54–72), compared to 49 years (IQR, 34–61) in the no
207 secondary infection group. Males accounted for 44% (1,621/3,682) of patients,
208 with a similar distribution observed across the three patient groups. The most
209 common comorbidities observed in the hospitalized COVID-19 patients were
210 cardiovascular diseases (CVD) (74.9%, 2,757/3,682), hypertension (65.9%,
211 2,428/3,682), diabetes (54.5%, 2,005/3,682) and chronic kidney diseases
212 (14.4%, 529/3,682). The prevalence of asthma, cancer, chronic obstructive
213 pulmonary disease (COPD), acquired immune deficiency syndrome (AIDS), and
214 obesity varied between 2.9% and 6.4% (Table 1).

215

Figure 1: Flow chart of the study

218 **Table 1:** Demographic characteristics of COVID-19 patients

	Overall, N = 3,682 (100%)¹	No secondary infection, N = 2,418 (65.6%)¹	Suspected secondary infection, N = 613 (16.6%)¹	Microbiologically confirmed Secondary infection, N = 651 (17.7%)¹
Demographics				
Age (years)	54 (39, 65)	49 (34, 61)	60 (49, 72)	63 (54, 72)
Age group (years)				
0-18	170 (4.6%)	163 (6.7%)	5 (0.8%)	2 (0.3%)
19-34	561 (15.2%)	469 (19.4%)	56 (9.1%)	36 (5.5%)
35-44	501 (13.6%)	394 (16.3%)	57 (9.3%)	50 (7.7%)
45-54	709 (19.3%)	499 (20.6%)	115 (18.8%)	95 (14.6%)
55-64	807 (21.9%)	456 (18.9%)	153 (25%)	193 (30.4%)
65+	934 (25.4%)	437 (18.1%)	227 (37%)	270 (41.5%)
Sex, male	1,621 (44%)	1,087 (45%)	272 (44.4%)	262 (40.2%)
Comorbidities				
Asthma	115 (3.1%)	63 (2.6%)	26 (4.2%)	26 (4%)
Cancer	123 (3.3%)	66 (2.7%)	28 (4.6%)	29 (4.5%)
Cardiovascular diseases	2,757 (74.9%)	1,651 (68.3%)	515 (84%)	591 (90.8%)
Chronic kidney diseases	529 (14.4%)	251 (10.4%)	132 (21.5%)	146 (22.4%)
COPD	108 (2.9%)	58 (2.4%)	26 (4.2%)	24 (3.7%)
Diabetes	2,005 (54.5%)	1,125 (46.5%)	365 (59.4%)	515 (79.1%)
AIDS	118 (3.2%)	69 (2.9%)	21 (3.4%)	28 (4.3%)
Hypertension	2,428 (65.9%)	1,410 (58.3%)	468 (76.3%)	550 (84.5%)
Obesity	237 (6.4%)	136 (5.6%)	34 (5.5%)	67 (10.3%)

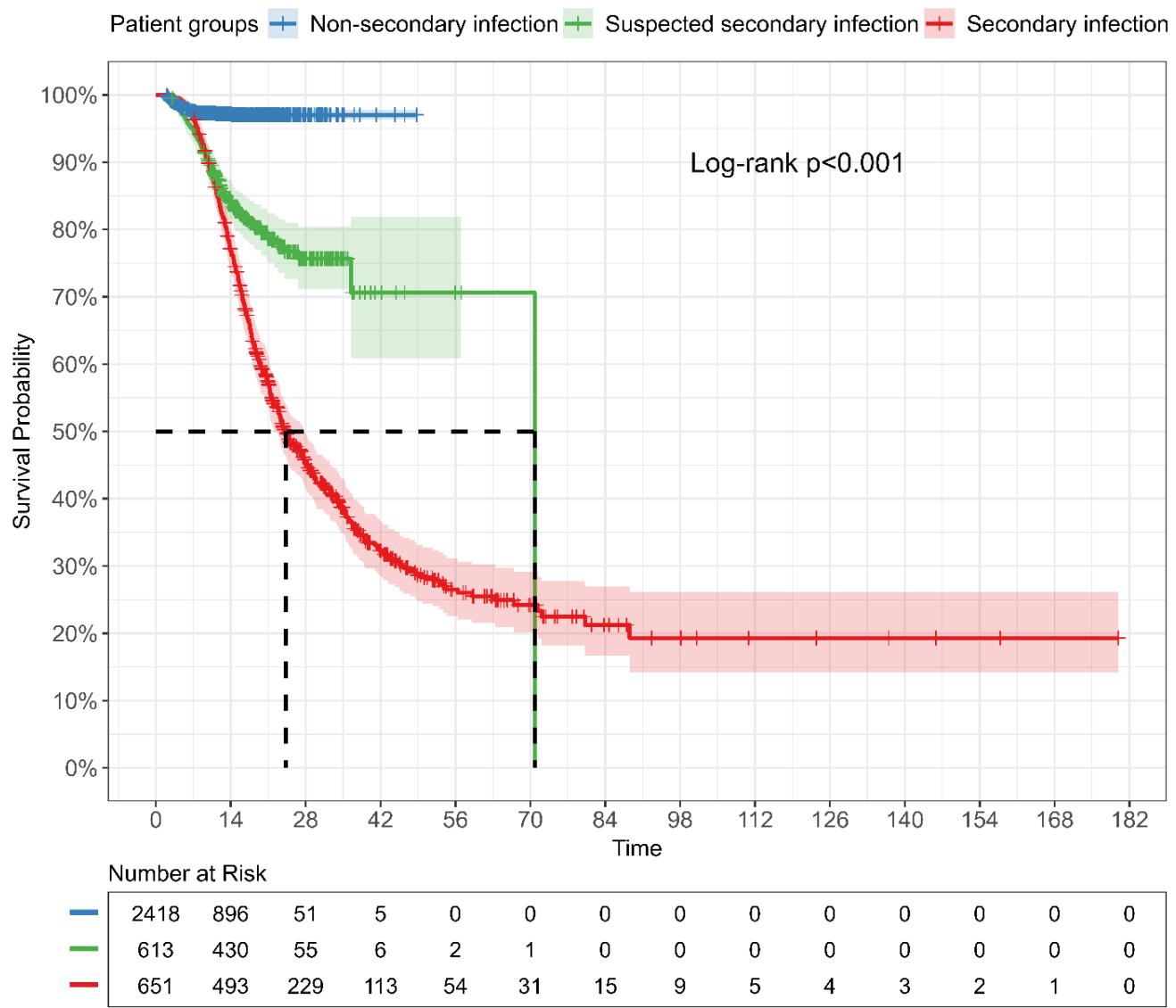
219 ¹Values are presented as numbers (%) or median (interquartile range) or n (%), and proportions
220 (%) are calculated based on column totals. COPD: chronic obstructive pulmonary disease, AIDS:
221 acquired immunodeficiency syndrome, ECMO: extracorporeal membrane oxygenation.

223 ***Treatment characteristics of hospitalized COVID-19 patients***

224 Of 3,682 patients, 2,138 (58.1%) received non-invasive oxygen therapies (face
225 mask, nasal cannula, noninvasive positive pressure ventilation (NIPPV), and high
226 flow nasal cannula), whereas 747 (20.3%) required mechanical ventilation. The
227 use of mechanical ventilation was higher in patients with microbiologically
228 confirmed secondary infection (88.2%, 574/651) compared to those with
229 suspected (19.1%, 117/613) and those with no secondary infection (2.3%,
230 56/2,418). Similarly, patients with microbiologically confirmed secondary
231 infection experienced a higher frequency of hemodialysis and ECMO (23% and
232 5.2%) compared to the suspected (3.6% and 0%) and no secondary infection
233 (0.1% and 0%) groups, respectively (Table 2).

234 There were 3,506 patients (95.2%) receiving at least one course of medication
235 during hospitalization, among which antibiotics were most common (73.1%),
236 followed by antithrombotic (72.6%), immunosuppressant (68.7%), antifungal
237 (12.9%) and antiviral drugs (8.4%). Of note, almost all patients with
238 microbiologically confirmed (median duration: 20 days) and suspected
239 secondary infection (median duration: 13 days) were prescribed antibiotics,
240 while 59.2% (1,431/2418) of patients without secondary infection also received
241 antibiotics for a median length of 8 days. Additionally, the frequency of
242 antifungal use was significantly higher in patients with microbiologically
243 confirmed (64.8%, 422/651) compared to those with suspected (6.2%, 38/613)
244 and no secondary infection (0.6%, 15/2,242) (Table 2).

245


246 **Table 2:** Treatment characteristics of COVID-19 patients

Overall, N = 3,682 (100%) ¹	No secondary infection, N = 2,418 (65.6%)¹	Suspecte d secondar y infection, N = 613 (16.6%)¹	Microbiologi cally confirmed Secondary infection, N = 651 (17.7%)¹
Supplemental oxygen requirement			
Noninvasive ventilation	2,138 (58.1%)	1,043 (43.1%)	516 (84.2%)
Mechanical ventilation	747 (20.3%)	56 (2.3%)	117 (19.1%)
Other Invasive procedures			
ECMO	34 (0.9%)	0 (0%)	0 (0%)
Hemodialysis	175 (4.8%)	3 (0.1%)	22 (3.6%)
Medicinal Treatment	3,506.0 (95.2%)	2,242.0 (92.7%)	613.0 (100%)
Antibiotic	2,692.0 (73.1%)	1,431.0 (59.2%)	610.0 (99.5%)
Antiviral	308.0 (8.4%)	166.0 (6.9%)	91.0 (14.8%)
Antifungal	475.0 (12.9%)	15.0 (0.6%)	38.0 (6.2%)
Immunosuppressant	2,528.0 (68.7%)	1,297.0 (53.6%)	592.0 (96.6%)
Antithrombotic	2,672.0 (72.6%)	1,420.0 (58.7%)	606.0 (98.9%)
Duration (days), median (IQR)			
Antibiotic	11 (8, 16)	8 (7, 11)	13 (10, 17)
Antiviral	5 (4, 5)	5 (4, 5)	5 (5, 5)
Antifungal	9 (5, 14)	7 (5, 10)	7 (3, 10)
Immunosuppressant	9 (7, 11)	8 (7, 10)	9 (7, 11)
Antithrombotic	12 (8, 16)	10 (8, 13)	13 (9, 18)
Length of hospital stay (days), median (IQR)	14 (10, 19)	13 (9, 16)	17 (13, 22)
Outcome, Survival	3,075 (83.5%)	2,351 (97.2%)	492 (80.3%)
			232 (35.6%)

247 ¹ n (%), Proportions (%) are calculated based on column totals

249 ***Clinical outcomes of hospitalized COVID-19 patients***

250 The overall survival rate was 83.5% (3,075/3,682) (Table 2). Notably, the
251 survival outcome was highest in patients without secondary infection (97.2%,
252 2,351/2,418), followed by patients with suspected secondary infection (80.3%,
253 492/613) and dropped dramatically to 35.6% (232/651) in those with
254 microbiologically confirmed secondary infection. The mean length of hospital
255 stay was 14 days (IQR, 10-19). Patients with microbiologically confirmed
256 secondary infections had a longer median hospital stay (21 days) compared to
257 those with suspected (17 days) and no secondary infections (13 days).
258 Additionally, the Kaplan-Meier survival curve indicates that the survival
259 probability for patients with microbiologically confirmed secondary infection was
260 50% on day 25 of hospital admission and declined to 28.3% on day 50 (**Figure**
261 **2**), significantly lower than those observed in the suspected (76.7% on day 25
262 and 70.6% on day 50) and no secondary infection groups (97% on both days)
263 (log-rank test, $p<0.001$).

264
265 **Figure 2:** Kaplan-Meier survival estimates by patient groups

266 Kaplan-Meier survival curves comparing patient groups. The x-axis represents
267 time (in days), and the y-axis represents the probability of survival. Distinct
268 colors or line types indicate different patient groups. Vertical ticks on the curves
269 mark censored data points. Statistical significance between survival curves was
270 evaluated using the log-rank test.

271

272 **Distribution of pathogens and source of isolation:**

273 A total of 2,649 non-duplicate pathogens were identified from microbiological
274 culture, including 1,343 (50.7%) from respiratory samples, 800 (30.2%) from
275 urine, 413 (15.6%) from blood, and 93 (3.5%) from other samples. Gram-
276 negative bacteria were predominant, comprising 53.8% (1,425/2,649) of
277 identified organisms, followed by fungal pathogens (32.6%, 861/2,649) and
278 Gram-positive bacteria (13.7%, 363/2,649).

279 The predominant Gram-negative pathogens were *A. baumannii* (16.6%), *K.*
280 *pneumoniae* (12.6%), and *P. aeruginosa* (9.9%). Among fungal pathogens, the
281 most prevalent were *Candida tropicalis* (13.4%), *Candida albicans* (9.9%), and
282 *Candida glabrata* (3.4%). *Enterococcus faecium* (7.5%), *Staphylococcus aureus*
283 (2.1%), and *Enterococcus faecalis* (1.2%) were the most common Gram-positive
284 pathogens (Table 3).

285 Gram-negative pathogens were predominantly found in lower respiratory
286 samples, with *A. baumannii* being the most common (27.9%, 376/1,343),
287 followed by *K. pneumoniae* (15.6%, 210/1,343), *P. aeruginosa* (15.7%,
288 211/1,343), *B. cepacia* (6.5%, 87/1,343) and *S. maltophilia* (4.5%, 60/1,343).
289 Fungal pathogens were over-represented in urine samples, with the dominance
290 of *C. tropicalis* (31.9%, 255/800), *C. albicans* (16.7%, 134/800), and *C. glabrata*
291 (9.3%, 74/800). The predominant bacteria found in urine were *E. faecium* (19%,
292 152/800) and *K. pneumoniae* (6.1%, 49/800). The two Gram-negative pathogens,
293 *K. pneumoniae* (16.7%, 69/413) and *A. baumannii* (12.8%, 53/413) were also
294 prevalent in blood samples, followed by the Gram-positive *Enterococcus*
295 *faecium* (8%, 33/413) and the fungal pathogen *Candida tropicalis* (7%, 29/413)
296 (**Table 3**).

297

298 **Table 3:** Distribution of pathogens by source of isolation

Pathogen	Overall N = 2,649 (100%) ¹	Blood N = 413 (15.6%) ¹	Lower respirat ory tract N = 1,343 (50.7%) ¹	Urine N = 800 (30.2%) ¹	Other samples N = 93 (3.5%) ¹
Gram-negative					
<i>Acinetobacter baumannii</i>	440 (16.6%)	53 (12.8%)	376 (28%)	5 (0.6%)	6 (6.5%)
<i>Klebsiella pneumoniae</i>	334 (12.6%)	69 (16.7%)	210 (15.6%)	49 (6.1%)	6 (6.5%)
<i>Pseudomonas aeruginosa</i>	262 (9.9%)	17 (4.1%)	211 (15.7%)	16 (2.0%)	18 (19.4%)
<i>Burkholderia cepacia</i>	94 (3.5%)	7 (1.7%)	87 (6.5%)	0 (0%)	0 (0%)
<i>E. meningoseptica</i>	83 (3.1%)	3 (0.7%)	80 (6.0%)	0 (0%)	0 (0%)
<i>S. maltophilia</i>	83 (3.1%)	23 (5.6%)	60 (4.5%)	0 (0%)	0 (0%)
<i>Escherichia coli</i>	32 (1.2%)	4 (1%)	7 (0.5%)	21 (2.6%)	0 (0%)
Others	97 (3.7%)	22 (5.3%)	60 (4.5%)	12 (1.5%)	3 (3.2%)
Gram-positive					
<i>Enterococcus faecium</i>	197 (7.4%)	33 (8%)	6 (0.4%)	152 (19%)	6 (6.5%)
<i>Staphylococcus aureus</i>	57 (2.1%)	13 (3.1%)	36 (2.7%)	1 (0.1%)	7 (7.5%)
<i>Enterococcus faecalis</i>	33 (1.2%)	24 (5.8%)	4 (0.3%)	5 (0.6%)	0 (0%)
<i>Staphylococcus haemolyticus</i>	32 (1.2%)	32 (7.7%)	0 (0%)	0 (0%)	0 (0%)
<i>Staphylococcus hominis</i>	12 (0.5%)	11 (2.7%)	1 (0.1%)	0 (0%)	0 (0%)
<i>Corynebacterium striatum</i>	6 (0.2%)	0 (0%)	6 (0.4%)	0 (0%)	0 (0%)
<i>Streptococcus pneumoniae</i>	4 (0.2%)	2 (0.5%)	2 (0.1%)	0 (0%)	0 (0%)
Others	22 (0.8%)	17 (4.1%)	2 (0.1%)	3 (0.4%)	0 (0%)
Fungi					
<i>Candida tropicalis</i>	354 (13.4%)	29 (7%)	58 (4.3%)	255 (31.9%)	12 (12.9%)
<i>Candida albicans</i>	263 (9.9%)	24 (5.8%)	83 (6.2%)	134 (16.8%)	22 (23.7%)

<i>Candida glabrata</i>	91 (3.4%)	2 (0.5%)	13 (1.0%)	74 (9.3%)	2 (2.2%)
<i>Trichosporon asahii</i>	36 (1.4%)	3 (0.7%)	0 (0%)	31 (3.9%)	2 (2.2%)
<i>Candida orthopsilosis</i>	29 (1.1%)	12 (2.9%)	4 (0.3%)	13 (1.6%)	0 (0%)
<i>Candida parapsilosis</i>	21 (0.8%)	6 (1.5%)	4 (0.3%)	11 (1.4%)	0 (0%)
<i>Candida dubliniensis</i>	16 (0.6%)	1 (0.2%)	13 (1.0%)	2 (0.3%)	0 (0%)
Others	51 (1.9%)	6 (1.5%)	10 (1.5%)	16 (2.0%)	9 (9.7%)

¹ n (%), Proportions (%) are calculated based on column totals

301 **Antimicrobial resistance profiles of predominant pathogens in**
302 **secondary infection:**

303 The proportion of resistance to commonly used antibiotics was notably high
304 among the predominant Gram-negative pathogens. Among the tested *A.*
305 *baumannii* isolates, 29% (108/372) were classified as MDR and 67.5% (251/372)
306 as XDR. The resistance levels were extremely high for carbapenems (95.2%,
307 354/372), 3rd/4th generation cephalosporins (96%, 357/372), fluoroquinolones
308 (97%, 360/371), penicillins+β-lactamase inhibitors (98.9%, 367/371) and
309 aminoglycosides (87.3%, 324/371). Similarly, 96% (263/274) of the tested *K.*
310 *pneumoniae* isolates were MDR, with high levels of resistance observed for
311 carbapenems (81.5%, 224/275), penicillins+β-lactamase inhibitors (92.7%,
312 255/275), fluoroquinolones (94.5%, 260/275), 3rd/4th-generation cephalosporins
313 (89.5%, 246/275). For *P. aeruginosa* isolates, 65.3% (145/222) were identified
314 as MDR and 8.1% (18/222) as XDR. The proportion of resistance was 79.3% for
315 carbapenems, 84.2% for 3rd/4th-generation cephalosporins, 73.9% for
316 fluoroquinolones, 74.5% for penicillins+β-lactamase inhibitors, and 64.4% for
317 aminoglycosides. Colistin resistance was observed in 37% (101/273) of *K.*
318 *pneumoniae*, 9.9% (22/222) of *P. aeruginosa*, and 8.4% (31/371) of *A.*
319 *baumannii* isolates. Fosfomycin resistance also reached 17.9% (37/207) among
320 the tested *K. pneumoniae* isolates (Table 4).

321 Among the Gram-positive bacteria, 93.5% (43/46) of *S. aureus* and 67.1%
322 (116/173) of *E. faecium*, and 5.3% (1/19) of *E. faecalis* isolates were MDR
323 (**Table 4**). *S. aureus* isolates displayed a high frequency of resistance to
324 oxacillin (91.3%, 42/46), macrolides/lincosamides (95.7%, 44/46),
325 fluoroquinolones (84.4%), but were susceptible to vancomycin, teicoplanin, and
326 linezolid. For *E. faecium* isolates, the resistance rate was 98.8% for penicillins
327 (ampicillin and benzylpenicillin), 94.7% for erythromycin, 98.8% for
328 fluoroquinolones, 100% for daptomycin, 57.2% for glycopeptides (vancomycin
329 and teicoplanin), 26% for tetracyclines and 1.8% for linezolid. Among the tested
330 *E. faecalis* isolates, a high resistance rate was observed for tetracyclines
331 (89.5%, 17/19), erythromycin (63.2%, 12/19), and fluoroquinolones (57.9%
332 (11/19). However, resistance to ampicillin, benzylpenicillin, vancomycin,

333 teicoplanin, and linezolid was less than 10%. Among the predominant fungal
334 pathogens, 91.2% (31/34) of *C. glabrata* and 44.3% (109/246) of *C. tropicalis*
335 isolates showed resistance to fluconazole, the first-line antifungal drug. These
336 organisms also exhibited resistance to voriconazole, with a prevalence of 28.6%
337 for *C. glabrata* and 21.4% for *C. tropicalis*. In contrast, only 6.1% (13/213) of *C.*
338 *albicans* were resistant to fluconazole. Resistance to echinocandins
339 (caspofungin, micafungin) and amphotericin B was low across the three
340 dominant fungal pathogens, ranging between 0.4% to 8.6% (Table 4).

342 **Table 4:** The distribution of antimicrobial resistance in predominant bacterial
 343 and fungal pathogens in secondary infections

Gram-negative pathogens			
	Acinetobacter baumannii (N=440)	Klebsiella pneumoniae (N=334)	Pseudomonas aeruginosa (N=262)
Drug-resistant			
Multidrug-resistant (MDR)	29% (108/372)	96.0% (263/274)	65.3% (145/222)
Extensively drug-resistant (XDR)	67.5% (251/372)	0.0% (0/274)	8.1% (18/222)
Antimicrobial categories¹			
Aminoglycosides	87.3% (324/371)	81.1% (223/275)	64.4% (143/222)
Penicillins + β-lactamase inhibitors	98.9% (367/371)	92.7% (255/275)	74.5% (166/222)
Carbapenems	95.2% (354/372)	81.5% (224/275)	79.3% (176/222)
Cephalosporins (3 rd /4 th)	96% (357/372)	89.5% (246/275)	84.2% (187/222)
Fosfomycin	20.0% (1/5)	17.9% (37/207)	-
Polymyxins (colistin)	8.4% (31/371)	37% (101/273)	9.9% (22/222)
Fluoroquinolones	97% (360/371)	94.5% (260/275)	73.9% (164/222)
Tetracyclines	50% (3/6)	42.7% (70/164)	-
Trimethoprim/sulfamethoxazole	78.7% (292/371)	61.4% (167/272)	-
Gram-positive pathogens			
	Enterococcus faecium (N=197)	Staphylococcus aureus (N=57)	Enterococcus faecalis (N=33)
Drug-resistant			
Multi-drug-resistant (MDR)	67.1% (116/173)	93.5% (43/46)	5.3% (1/19)
Extensively drug-resistant (XDR)	0.0% (0/173)	0.0% (0/46)	0.0% (0/19)
Antimicrobial Categories¹			
Aminoglycosides (gentamicin)	-	66.7% (30/45)	-
Penicillins	98.8% (171/173)	95.7% (44/46)	10.5% (2/19)
Glycopeptides	57.2% (99/173)	0.0% (0/46)	5.3% (1/19)
Macrolides/lincosamides	94.7% (161/170)	95.7% (44/46)	63.2% (12/19)
Lipopeptides (daptomycin)	100.0% (39/39)	-	-
Oxazolidinones (linezolid)	1.8% (3/171)	0.0% (0/45)	5.6% (1/18)
Fluoroquinolones	98.8% (171/173)	84.4% (38/45)	57.9% (11/19)
Tetracyclines	26% (45/173)	0.0% (0/45)	89.5% (17/19)
Fungal pathogens			
	Candida tropicalis (N=355)	Candida albicans (N=263)	Candida glabrata (N=91)
Flucytosine ¹	0.4% (1/256)	1.4% (3/213)	1.6% (1/63)
Amphotericin B ¹	0.4% (1/259)	0.5% (1/214)	0.0% (0/63)
Caspofungin ¹	1.5% (4/260)	2.3% (5/214)	8.6% (5/58)
Fluconazole ¹	44.3% (109/246)	6.1% (13/213)	91.2% (31/34)
Micafungin ¹	1.2% (3/260)	1.9% (4/211)	1.6% (1/62)
Voriconazole ¹	21.4% (53/248)	1.4% (3/211)	28.6% (8/28)

¹ % resistance (number of resistant isolates / total number of isolates tested)

344

345

346 **Factors associated with mortality in hospitalized COVID-19 patients:**

347 According to univariate logistic regression analyses, patients with suspected
348 (OR: 8.63, $p<0.001$) or microbiologically confirmed secondary infection (OR:
349 63.4, $p<0.001$) had significantly higher odds of mortality, compared to those
350 with no secondary infection (reference group). Older age (35-44 years, OR: 10,
351 $p=0.024$; 45-54 years, OR: 18.5, $p=0.004$; 55-64 years, OR: 43.1, $p <0.001$;
352 65+, OR: 93.2, $p<0.001$) was also associated with increased mortality
353 compared to the 0-18 years age group (reference group). Comorbidities such as
354 cancer (OR: 2.08, $p<0.001$), cardiovascular disease (OR: 6.45, $p<0.001$),
355 chronic kidney disease (OR: 2.91, $p< 0.001$), COPD (OR: 1.72, $p=0.017$),
356 diabetes (OR: 4.21, $p<0.001$), and hypertension (OR: 3.94, $p<0.001$), as well as
357 the use of oxygen therapy (non-invasive: OR: 4.94, $p<0.001$; mechanical
358 ventilation: OR: 109, $p<0.001$) and invasive procedures like hemodialysis (OR:
359 16.2, $p<0.001$), were significantly linked to higher mortality.

360 A multivariate logistic regression model incorporated significant predictors from
361 the univariate analyses. Multivariate analysis showed that suspected (OR: 2.75,
362 $p<0.001$) and microbiologically confirmed secondary infection (OR: 2.22, p
363 $=0.001$) were independently associated with higher mortality compared to
364 those with no secondary infection. Compared to the 0-18 years age group, older
365 age (55-64 years, OR: 9.14, $p=0.046$; 65+, OR: 32.4, $p=0.002$) was also an
366 independent predictor of mortality, as were chronic kidney disease (OR: 1.69,
367 $p=0.005$), cardiovascular disease (OR: 2.54, $p<0.001$) and mechanical
368 ventilation (OR: 79.9, $p<0.001$) (**Table 5**).

369

Table 5: Prediction factors associated with mortality in COVID-19 patients

Characteristic	Univariate			Multivariable		
	OR	95% CI	p-value	OR	95% CI	p-value
Secondary infection group						
No secondary infection	1.00			1.00		
Suspected secondary infection	8.63	6.33, 11.9	<0.001	2.75	1.76, 4.31	<0.001
Microbiologically confirmed secondary infection	63.4	47.7, 85.4	<0.001	2.22	1.36, 3.60	0.001
Demographics						
Age group (years)						
0-18	1.00			1.00		
19-34	3.69	0.72, 67.5	0.2	1.64	0.24, 33.5	0.7
35-44	10.0	2.11, 179	0.024	2.89	0.45, 57.6	0.3
45-54	18.5	4.06, 328	0.004	4.94	0.80, 97.1	0.2
55-64	43.1	9.57, 761	<0.001	9.14	1.50, 179	0.046
65+	93.2	20.8, 1,642	<0.001	32.4	5.34, 633	0.002
Sex, male	0.80	0.67, 0.96	0.016	1.08	0.79, 1.46	0.6
Length of stay (days)	1.00	0.99, 1.01	>0.9			
Comorbidity						
Asthma	1.28	0.78, 2.00	0.3	—	—	—
Cancers	2.08	1.37, 3.08	<0.001	1.84	0.92, 3.65	0.082
Cardiovascular diseases	6.45	4.63, 9.27	<0.001	2.54	1.53, 4.30	<0.001
Chronic kidney diseases	2.91	2.36, 3.58	<0.001	1.69	1.16, 2.45	0.005
COPD	1.72	1.08, 2.656	0.017	0.67	0.30, 1.48	0.3
Diabetes	4.21	3.42, 5.23	<0.001	1.23	0.87, 1.75	0.2
AIDS	1.31	0.81, 2.03	0.2			
Hypertension	3.94	3.11, 5.06	<0.001	0.95	0.63, 1.43	0.8

Obesity	1.13	0.79, 1.58	0.5			
Supplemental oxygen						
Non-invasive	4.94	3.94, 6.26	<0.00 1	0.67	0.44, 1.01	0.056
Mechanical ventilation	109	82.4, 147	<0.00 1	79.9	51.4, 127	<0.00 1
Invasive procedure						
ECMO	1.84	0.81, 3.81	0.12	—	—	—
Hemodialysis	16.2	11.5, 23.9	<0.00 1	1.28	0.83, 2.02	0.3

371 OR: Odds Ratio, CI: Confidence Interval, COPD: chronic obstructive pulmonary disease, AIDS:
 372 acquired immunodeficiency syndrome, ECMO: extracorporeal membrane oxygenation

373

374 **Discussion:**

375 We conducted an epidemiological investigation on bacterial and fungal
 376 secondary infection in COVID-19 patients hospitalized at a major COVID-19
 377 treatment center in HCMC, Vietnam, between 2020 and 2021. We found a
 378 prevalence of 17.7% for microbiologically confirmed secondary infections
 379 among the admitted COVID-19 patients. The prevalence of secondary infection
 380 has been reported worldwide, varying between 9% and 30%, depending on
 381 the country, hospital setting, patient population, and healthcare system
 382 capacity ^{16,17}. In a recent meta-analysis of nineteen studies, a pooled
 383 prevalence of secondary infection in COVID-19 patients was reported at 19% ¹⁸.
 384 Consistent with previous reports, we found that the majority of bacterial
 385 pathogens originated from lower respiratory samples, while *Candida* spp.
 386 predominated urine samples ^{16,17,19}. Furthermore, Gram-negative bacteria such
 387 as *A. baumannii*, *K. pneumoniae*, and *P. aeruginosa* were prevalent in both
 388 respiratory and blood samples, exhibiting a high frequency of MDR and XDR,
 389 including resistance to last-resort antibiotics. Our findings concur with previous
 390 publications, highlighting the proliferation of MDR and XDR Gram-negative
 391 bacteria during the pandemic ²⁰. There are imminent threats of establishing
 392 endemic circulations of these MDR/XDR strains in hospital settings worldwide
 393 after the pandemic, potentially leading to increased demand for last-resort

394 antibiotics and poorer patient outcomes. Furthermore, severe COVID-19
395 patients are at elevated risk of secondary fungal infection ²¹. Here, *C. albicans*
396 and *C. tropicalis* were the most commonly found fungal pathogens, primarily
397 derived from the urinary tract, with a concerning high rate of fluconazole
398 resistance. The World Health Organization (WHO) has recently listed *C. albicans*
399 and *C. tropicalis* as critical and high-risk pathogens, respectively ²². We need to
400 fill the current gaps in early diagnostics and treatment to improve the clinical
401 outcomes of secondary fungal diseases²³.

402 Several major contributing factors for secondary infection have been reported,
403 including an overwhelmed healthcare system, compromised hospital infection
404 control and prevention, greater uses of antibiotic and immunosuppressive drugs
405 and invasive procedures, and the endemic circulation of MDR nosocomial
406 pathogens ²⁴⁻²⁶. These factors were also observed in our setting and among our
407 study population, in which the hospital faced substantial challenges with the
408 overwhelming numbers of hospitalized COVID-19 patients. Apart from the
409 challenges stemming from the over-burdened healthcare system, we found that
410 almost all COVID-19 patients (73.1%) admitted to our hospital were given
411 broad-spectrum antibiotics, regardless of their severity at presentation. This
412 contrasts with the much lower prevalence of microbiologically-confirmed
413 (17.7%) and suspected secondary infection (16.6%). Our data raise concerns
414 about the overuse of empirical antibiotics aimed at preventing secondary
415 infection, which are common in viral respiratory diseases such as COVID-19.
416 Although directed by a local COVID-19 treatment protocol, the benefits of early
417 treatment of antibiotics are a subject of continuous debate ²⁷⁻²⁹. Heavy use of
418 broad-spectrum antibiotics can lead to the selection of MDR and XDR
419 organisms, disruptions of human microbiota, and adverse effects in patients
420 with co-morbidities ^{25,30-33}. Together with the common use of
421 immunosuppressive drugs, this creates a favorable condition for the
422 proliferation and spread of nosocomial MDR and XDR bacterial and fungal
423 pathogens. As evidenced in our dataset, patients with microbiologically
424 confirmed secondary infection had a longer duration of antibiotic use, from
425 whom the identified bacterial pathogens (i.e., *A. baumannii*, *K. pneumoniae*, *P.*
426 *aeruginosa*) often displayed MDR or XDR phenotype. Furthermore, other

427 opportunistic pathogens, including *Burkholderia cepacia*, *Elizabethkingia*
428 *meningoseptica*, *Stenotrophomonas maltophilia*, and *Candida* spp., were found
429 in these patients. Given that empirical broad-spectrum antibiotics were initiated
430 very early in most patients, with a mean time of two hours from admission and
431 before culture results were available, the causal relationship between
432 antimicrobial use and the occurrence of secondary infection is challenging to
433 determine. Nonetheless, our findings indicate that broad-spectrum antibiotics
434 should not be given as prophylactic therapy without microbiological evidence.

435 Secondary infection in COVID-19 patients often results in increased mortality
436 compared to those without the infection ^{29,34-36}. Here, we also observed a
437 higher mortality rate (64.4%) among patients with microbiologically confirmed
438 secondary infection, compared to 19.7% among suspected secondary infection
439 and 2.8% in patients without secondary infection. This major discrepancy in
440 mortality signifies the established correlation between secondary infection and
441 mortality in COVID-19 patients. Several risk factors of death were identified,
442 including the occurrence of secondary infection, older age, the presence of
443 cardiovascular and kidney disease, and the use of mechanical ventilation,
444 consistent with findings from previous publications ^{35,37-41}. The prevention of
445 secondary infection in COVID-19 patients, especially those at higher risk of
446 mortality, should be a priority. This is of particular importance given the fact
447 that many of these patients suffered from multiple infection episodes with
448 highly resistant organisms. During the peak of the COVID-19 pandemic in HCMC,
449 the hospital setting was overloaded and understaffed. Coupled with the
450 insufficient supplies of personal protective equipment and compromised IPC
451 measures, this presented major challenges for preventing secondary infection.
452 This situation underscores the importance of effective hospital IPC and antibiotic
453 stewardship programs, which needs to be strengthened in peace time to
454 address similar devastating scenarios in the future.

455 Our study has some limitations. Due to the lack of COVID-19 vaccination
456 information, we could not assess the effect of the vaccine on clinical features
457 and the occurrence of secondary infection. Our study was retrospective, and
458 hence, we could not capture all the factors resulting in the development of

459 secondary infection in COVID-19 patients or determine the direct cause of
460 mortality. Another limitation is the potential risk of overadjustment, as
461 mechanical ventilation is both a marker of severe disease and a risk factor for
462 secondary infection. To address this, we performed a sensitivity analysis
463 excluding ventilation, which showed that secondary infection remained
464 significantly associated with mortality, with an increased odds ratio. This
465 supports the robustness of our findings, although the contributions of secondary
466 infection and ventilation remain challenging to disentangle. Although fungal
467 pathogens such as *C. tropicalis*, *C. albicans* and *C. glabrata* are frequently
468 reported in secondary fungal infection among patients with severe COVID-19⁴²⁻
469⁴⁴, their presence in the respiratory and urine samples may represent
470 colonization. However, in our study, the majority of COVID-19 patients with
471 secondary fungal infection were prescribed antifungals (82%), suggesting a high
472 likelihood of true fungal infections.

473 **Conclusion:**

474 This work underscores a significantly higher mortality in severe COVID-19
475 patients with secondary infection, compared to those with suspected or no
476 secondary infection in Vietnam. Secondary infection disproportionately affected
477 elderly people with comorbidities and higher use of invasive treatment including
478 mechanical ventilation and hemodialysis. Gram-negative bacterial pathogens
479 were most common, largely found in respiratory samples, while fungal
480 pathogens were frequently detected in urine samples. The prevalence of MDR
481 and XDR bacterial pathogens was exceptionally high, with a notable rise of
482 fungal pathogens. Although, the pandemic has been successfully controlled, the
483 lessons learned from its detrimental impact on the healthcare system remains
484 highly relevant, especially considering its long-term impact of the continued
485 circulation of MDR/XDR bacterial and fungal strains. Our findings highlight the
486 needs to strengthen healthcare system, particularly IPC measures and antibiotic
487 stewardship programs for preventing nosocomial transmission and better
488 preparing for future epidemic situations.

489

490 **Declarations**

491 **Ethics approval and consent to participate**

492 The study was conducted in accordance with the principles of the Declaration of
493 Helsinki and with relevant regulations, approved protocol and good clinical
494 practice. The study was approved by the HTD Ethics Committee (Number:
495 2630/QD-BVBND), Oxford Tropical Research Ethics Committee (OxTREC
496 Reference: 530-22), and the International Vaccine Institute (IVI) Institutional
497 Review Board (IRB Number: 2022-010). This was a retrospective study involving
498 no direct patient enrollment, for which the requirement for consent to
499 participate was waived by the HTD Ethics Committee.

500 **Consent for publication**

501 Not applicable

502 **Availability of data and materials**

503 The data supporting the findings of this study are not openly available due to
504 sensitive reasons. However, they can be obtained from the corresponding
505 author upon reasonable request. The data are stored in controlled access data
506 storage at Oxford University Clinical Research Unit.

507 **Competing interests**

508 The authors declare no competing interests.

509 **Funding**

510 Dr Pham Thanh Duy is funded by Wellcome International Training Fellowship
511 (grant number: 222983/Z/21/Z). The funders had no role in study design, data
512 collection and analysis, decision to publish, or preparation of the manuscript.

513 **Author Contributions**

514 P.H.A and C.V. collected, analysed and interpreted data under the supervision of
515 P.T.D. P.H.A and C.V. drafted and revised the manuscript with P.T.D and S.E.P.

516 N.P.H.L. contributed to study design and manuscript writing. N.L.N.P., L.T.Q.N.,
517 H.P.T, H.Q.M collected data and helped with manuscript preparation. Y.J.
518 contributed to data analysis and interpretation and manuscript revision. H.Q.M.,
519 H.P.T., L.T.Q.N. supported data collection, data cleaning and manuscript writing.
520 N.T.D. contributed to study design, manuscript writing and revision. P.T.D,
521 N.P.H.L and S.E.P conceptualized and designed the study, led the analysis and
522 data interpretation, finalized the manuscript.

523 **Acknowledgements**

524 We would like to thank the healthcare staff at the Hospital for Tropical Diseases,
525 Ho Chi Minh City, Viet Nam for their assistance in data collection for this study.

526

527

528 **References:**

529 1. WHO Global Report. COVID-19 epidemiological update.
530 <https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-167> (2024).

532 2. Suleiman, A. S. *et al.* A meta-meta-analysis of co-infection, secondary
533 infections, and antimicrobial resistance in COVID-19 patients. *J Infect Public
534 Health* **16**, 1562-1590 (2023).

535 3. Ul Mustafa, Z. *et al.* Bacterial co-infections, secondary infections and
536 antimicrobial use among hospitalized COVID-19 patients in the sixth wave
537 in Pakistan: findings and implications. *Expert Rev Anti Infect Ther* **22**, 229-
538 240 (2024).

539 4. Chua, K. Y. L. *et al.* Co-infection, secondary infection, and antimicrobial use
540 in patients hospitalised with COVID-19 during the first pandemic wave from
541 the ISARIC WHO CCP-UK study. *Clinical Infectious Diseases* **73**, 487-496
542 (2021).

543 5. Langford, B. J. *et al.* Bacterial co-infection and secondary infection in
544 patients with COVID-19: a living rapid review and meta-analysis. *Clinical
545 Microbiology and Infection* **26**, 1622-1629 (2020).

546 6. Pałka, A. *et al.* Secondary bacterial infections & extensively drug-resistant
547 bacteria among COVID-19 hospitalized patients at the University Hospital
548 in Kraków. *Ann Clin Microbiol Antimicrob* **22**, 1-10 (2023).

549 7. Vijay, S. *et al.* Secondary infections in hospitalized COVID-19 patients:
550 Indian experience. *Infect Drug Resist* **14**, 1893-1903 (2021).

551 8. Wolfensberger, A. *et al.* Nosocomial COVID-19 Incidence and Secondary
552 Attack Rates among Patients of Tertiary Care Center, Zurich, Switzerland.
553 *Emerg Infect Dis* **28**, 2087-2090 (2022).

554 9. Minh, L. H. N., Khoi Quan, N., Le, T. N., Khanh, P. N. Q. & Huy, N. T. COVID-
555 19 Timeline of Vietnam: Important Milestones Through Four Waves of the
556 Pandemic and Lesson Learned. *Front Public Health* **9**, 1-4 (2021).

557 10. Vietnam Ministry of Health - Ministry of Health portal on COVID-19
558 pandemic.

559 11. Bui, H. M. *et al.* Movement restrictions, vaccine coverage, and reduction of
560 the COVID-19 incidence rate in the fourth wave of the pandemic: Analysis
561 results from 63 provinces in Vietnam. *Front Public Health* **10**, (2023).

562 12. Russell, C. D. *et al.* Co-infections, secondary infections, and antimicrobial
563 use in patients hospitalised with COVID-19 during the first pandemic wave

564 from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort
565 study. *Lancet Microbe* **2**, e354–e365 (2021).

566 13. Hall, K. K. & Lyman, J. A. Updated review of blood culture contamination.
567 *Clin Microbiol Rev* **19**, 788–802 (2006).

568 14. Bartlett, J. G., Breiman, R. F., Mandell, L. A. & File, Jr., T. M.
569 Community-Acquired Pneumonia in Adults: Guidelines for Management.
570 *Clinical Infectious Diseases* **26**, 811–838 (1998).

571 15. Magiorakos, A. P. *et al.* Multidrug-resistant, extensively drug-resistant and
572 pandrug-resistant bacteria: An international expert proposal for interim
573 standard definitions for acquired resistance. *Clinical Microbiology and*
574 *Infection* **18**, 268–281 (2012).

575 16. Musuuza, J. S. *et al.* Prevalence and outcomes of co-infection and
576 superinfection with SARS-CoV-2 and other pathogens: A systematic review
577 and metaanalysis. *PLoS One* **16**, (2021).

578 17. Langford, B. J. *et al.* Bacterial co-infection and secondary infection in
579 patients with COVID-19: a living rapid review and meta-analysis. *Clinical*
580 *Microbiology and Infection* vol. 26 1622–1629 Preprint at
581 <https://doi.org/10.1016/j.cmi.2020.07.016> (2020).

582 18. Suleiman, A. S. *et al.* A meta-meta-analysis of co-infection, secondary
583 infections, and antimicrobial resistance in COVID-19 patients. *Journal of*
584 *Infection and Public Health* vol. 16 1562–1590 Preprint at
585 <https://doi.org/10.1016/j.jiph.2023.07.005> (2023).

586 19. Ripa, M. *et al.* Secondary infections in patients hospitalized with COVID-19:
587 incidence and predictive factors. *Clinical Microbiology and Infection* **27**,
588 451–457 (2021).

589 20. Langford, B. J. *et al.* Antimicrobial resistance in patients with COVID-19: a
590 systematic review and meta-analysis. *Lancet Microbe* **4**, e179–e191
591 (2023).

592 21. Srisurapanont, K. *et al.* Candidemia Following Severe COVID-19 in
593 Hospitalised and Critical Ill Patients: A Systematic Review and Meta-
594 Analysis. *Mycoses* **67**, e13798 (2024).

595 22. WHO. *WHO Fungal Priority Pathogens List to Guide Research, Development*
596 *and Public Health Action. Licence: CC BY-NC-SA 3.0 IGO* (2022).

597 23. Hoenigl, M. *et al.* COVID-19-associated fungal infections. *Nature*
598 *Microbiology* vol. 7 1127–1140 Preprint at <https://doi.org/10.1038/s41564-022-01172-2> (2022).

600 24. Almudena, J. R. & Lidia, L. Nosocomial COVID-19 : A Nationwide Spanish
601 Study. *Gerontology* (2023) doi:10.1159/000527711.

602 25. Khan, S., Hasan, S. S., Bond, S. E., Conway, B. R. & Aldeyab, M. A.
603 Antimicrobial consumption in patients with COVID-19: a systematic review
604 and meta-analysis. *Expert Rev Anti Infect Ther* **20**, 749-772 (2022).

605 26. Budhiraja, S. *et al.* Secondary infections modify the overall course of
606 hospitalized patients with COVID-19: a retrospective study from a network
607 of hospitals across North India. *JID Regions* **3**, 44-53 (2022).

608 27. Chedid, M. *et al.* Antibiotics in treatment of COVID-19 complications: a
609 review of frequency, indications, and efficacy. *J Infect Public Health* **14**,
610 570-576 (2021).

611 28. Lingas, E. C. Empiric Antibiotics in COVID 19: A Narrative Review. *Cureus*
612 **14**, 2-7 (2022).

613 29. Ozyurt, E., Erman Daloglu, A., Inanoglu, K., Kavrut Ozturk, N. & Ozmen, S.
614 Bacterial and fungal secondary infections occurring in COVID-19 patients
615 followed in intensive care: a retrospective study. *J Infect Dev Ctries* **18**,
616 350-354 (2024).

617 30. Bedenić, B. *et al.* Multidrug-Resistant Bacteria in a COVID-19 Hospital in
618 Zagreb. *Pathogens* **12**, 117 (2023).

619 31. Kariyawasam, R. M. *et al.* Antimicrobial resistance (AMR) in COVID-19
620 patients: a systematic review and meta-analysis (November 2019–June
621 2021). *Antimicrob Resist Infect Control* **11**, (2022).

622 32. Toc, D. A. *et al.* A Tale of Two Pandemics: Antimicrobial Resistance
623 Patterns of Enterococcus spp. in COVID-19 Era. *Antibiotics* **12**, 1-17 (2023).

624 33. Francino, M. P. Antibiotics and the Human Gut Microbiome: Dysbioses and
625 Accumulation of Resistances. *Front Microbiol* **6**, (2016).

626 34. Bahceci, I. *et al.* Secondary Bacterial Infection Rates Among Patients With
627 COVID-19. *Cureus* **14**, 4-11 (2022).

628 35. Wu, G., Lu, J., Liu, D. & He, Y. Characteristics and risk factors of secondary
629 bacterial infections in COVID-19 patients. *Antimicrobial Stewardship and*
630 *Healthcare Epidemiology* **3**, 1-9 (2023).

631 36. Binkhamis, K. *et al.* Prevalence of secondary infections and association
632 with mortality rates of hospitalized COVID-19 patients. *Ann Saudi Med* **43**,
633 243-253 (2023).

634 37. Silaghi-dumitrescu, R., Patrascu, I., Lehene, M. & Bercea, I. Comorbidities
635 of COVID-19 Patients. *Medicina (B Aires)* **59**, 1-16 (2023).

636 38. Chatterjee, S. *et al.* Association of COVID-19 with Comorbidities: An
637 Update. *ACS Pharmacol Transl Sci* **6**, 334–354 (2023).

638 39. Jamnani, A. N., Montazeri, M., Mirzakhani, M., Moosazadeh, M. & Haghghi,
639 M. Evaluation of Bacterial Coinfection and Antibiotic Resistance in Patients
640 with COVID-19 Under Mechanical Ventilation. *SN Compr Clin Med* **4**, 4–8
641 (2022).

642 40. Duan, Y. *et al.* Risk factors, outcomes, and epidemiological and etiological
643 study of hospitalized COVID-19 patients with bacterial co-infection and
644 secondary infections. *European Journal of Clinical Microbiology and*
645 *Infectious Diseases* **43**, 577–586 (2024).

646 41. Zhou, F. *et al.* Clinical course and risk factors for mortality of adult
647 inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.
648 *The Lancet* **395**, 1054–1062 (2020).

649

650

651 Tables and Figures

652 **Table 1:** Demographic characteristics of COVID-19 patients

653 **Table 2:** Treatment characteristics of COVID-19 patients

654 **Table 3:** Distribution of pathogens by source of isolation

655 **Table 4:** The distribution of antimicrobial resistance in predominant

656 bacterial and fungal pathogens in secondary infections

657 **Table 5:** Prediction factors associated with mortality in COVID-19 patients

658 **Figure 1:** Flow chart of the study

659 **Figure 2:** Kaplan-Meier survival estimates by patient groups

660

661

Table 1: Demographic characteristics of COVID-19 patients

	Overall, N = 3,682 (100%)¹	No secondary infection, N = 2,418 (65.6%)¹	Suspected secondary infection, N = 613 (16.6%)¹	Microbiologically confirmed Secondary infection, N = 651 (17.7%)¹
Demographics				
Age (years)	54 (39, 65)	49 (34, 61)	60 (49, 72)	63 (54, 72)
Age group (years)				
0-18	170 (4.6%)	163 (6.7%)	5 (0.8%)	2 (0.3%)
19-34	561 (15.2%)	469 (19.4%)	56 (9.1%)	36 (5.5%)
35-44	501 (13.6%)	394 (16.3%)	57 (9.3%)	50 (7.7%)
45-54	709 (19.3%)	499 (20.6%)	115 (18.8%)	95 (14.6%)
55-64	807 (21.9%)	456 (18.9%)	153 (25%)	193 (30.4%)
65+	934 (25.4%)	437 (18.1%)	227 (37%)	270 (41.5%)
Sex, male	1,621 (44%)	1,087 (45%)	272 (44.4%)	262 (40.2%)
Comorbidities				
Asthma	115 (3.1%)	63 (2.6%)	26 (4.2%)	26 (4%)
Cancer	123 (3.3%)	66 (2.7%)	28 (4.6%)	29 (4.5%)
Cardiovascular diseases	2,757 (74.9%)	1,651 (68.3%)	515 (84%)	591 (90.8%)
Chronic kidney diseases	529 (14.4%)	251 (10.4%)	132 (21.5%)	146 (22.4%)
COPD	108 (2.9%)	58 (2.4%)	26 (4.2%)	24 (3.7%)
Diabetes	2,005 (54.5%)	1,125 (46.5%)	365 (59.4%)	515 (79.1%)
AIDS	118 (3.2%)	69 (2.9%)	21 (3.4%)	28 (4.3%)
Hypertension	2,428 (65.9%)	1,410 (58.3%)	468 (76.3%)	550 (84.5%)
Obesity	237 (6.4%)	136 (5.6%)	34 (5.5%)	67 (10.3%)

¹Values are presented as numbers (%) or median (interquartile range) or n (%), and proportions (%) are calculated based on column totals. COPD: chronic obstructive pulmonary disease, AIDS: acquired immunodeficiency syndrome, ECMO: extracorporeal membrane oxygenation.

Table 2: Treatment characteristics of COVID-19 patients

	Overall, N = 3,682 (100%)¹	No secondary infection, N = 2,418 (65.6%)¹	Suspected secondary infection, N = 613 (16.6%)¹	Microbiologically confirmed Secondary infection, N = 651 (17.7%)¹
Supplemental oxygen requirement				
Noninvasive ventilation	2,138 (58.1%)	1,043 (43.1%)	516 (84.2%)	579 (88.9%)
Mechanical ventilation	747 (20.3%)	56 (2.3%)	117 (19.1%)	574 (88.2%)
Other Invasive procedures				
ECMO	34 (0.9%)	0 (0%)	0 (0%)	34 (5.2%)
Hemodialysis	175 (4.8%)	3 (0.1%)	22 (3.6%)	150 (23%)
Medicinal Treatment	3,506.0 (95.2%)	2,242.0 (92.7%)	613.0 (100%)	651.0 (100%)
Antibiotic	2,692.0 (73.1%)	1,431.0 (59.2%)	610.0 (99.5%)	651.0 (100%)
Antiviral	308.0 (8.4%)	166.0 (6.9%)	91.0 (14.8%)	51.0 (7.8%)
Antifungal	475.0 (12.9%)	15.0 (0.6%)	38.0 (6.2%)	422.0 (64.8%)
Immunosuppressant	2,528.0 (68.7%)	1,297.0 (53.6%)	592.0 (96.6%)	639.0 (98.2%)
Antithrombotic	2,672.0 (72.6%)	1,420.0 (58.7%)	606.0 (98.9%)	646.0 (99.2%)
Duration (days), median (IQR)				
Antibiotic	11 (8, 16)	8 (7, 11)	13 (10, 17)	20 (14, 31)
Antiviral	5 (4, 5)	5 (4, 5)	5 (5, 5)	5 (4, 5)
Antifungal	9 (5, 14)	7 (5, 10)	7 (3, 10)	10 (5, 14)
Immunosuppressant	9 (7, 11)	8 (7, 10)	9 (7, 11)	10 (9, 14)
Antithrombotic	12 (8, 16)	10 (8, 13)	13 (9, 18)	17 (11, 27)
Length of hospital stay (days), median (IQR)	14 (10, 19)	13 (9, 16)	17 (13, 22)	21 (14, 35)
Outcome, Survival	3,075 (83.5%)	2,351 (97.2%)	492 (80.3%)	232 (35.6%)

¹ n (%), Proportions (%) are calculated based on column totals

Table 3: Distribution of pathogens by source of isolation

Pathogen	Overall N = 2,649 (100%) ¹	Blood N = 413 (15.6%) ¹	Lower respiratory tract N = 1,343 (50.7%) ¹	Urine N = 800 (30.2%) ¹	Other samples N = 93 (3.5%) ¹
Gram-negative					
<i>Acinetobacter baumannii</i>	440 (16.6%)	53 (12.8%)	376 (28%)	5 (0.6%)	6 (6.5%)
<i>Klebsiella pneumoniae</i>	334 (12.6%)	69 (16.7%)	210 (15.6%)	49 (6.1%)	6 (6.5%)
<i>Pseudomonas aeruginosa</i>	262 (9.9%)	17 (4.1%)	211 (15.7%)	16 (2.0%)	18 (19.4%)
<i>Burkholderia cepacia</i>	94 (3.5%)	7 (1.7%)	87 (6.5%)	0 (0%)	0 (0%)
<i>E. meningoseptica</i>	83 (3.1%)	3 (0.7%)	80 (6.0%)	0 (0%)	0 (0%)
<i>S. maltophilia</i>	83 (3.1%)	23 (5.6%)	60 (4.5%)	0 (0%)	0 (0%)
<i>Escherichia coli</i>	32 (1.2%)	4 (1%)	7 (0.5%)	21 (2.6%)	0 (0%)
Others	97 (3.7%)	22 (5.3%)	60 (4.5%)	12 (1.5%)	3 (3.2%)
Gram-positive					
<i>Enterococcus faecium</i>	197 (7.4%)	33 (8%)	6 (0.4%)	152 (19%)	6 (6.5%)
<i>Staphylococcus aureus</i>	57 (2.1%)	13 (3.1%)	36 (2.7%)	1 (0.1%)	7 (7.5%)
<i>Enterococcus faecalis</i>	33 (1.2%)	24 (5.8%)	4 (0.3%)	5 (0.6%)	0 (0%)
<i>Staphylococcus haemolyticus</i>	32 (1.2%)	32 (7.7%)	0 (0%)	0 (0%)	0 (0%)
<i>Staphylococcus hominis</i>	12 (0.5%)	11 (2.7%)	1 (0.1%)	0 (0%)	0 (0%)
<i>Corynebacterium striatum</i>	6 (0.2%)	0 (0%)	6 (0.4%)	0 (0%)	0 (0%)
<i>Streptococcus pneumoniae</i>	4 (0.2%)	2 (0.5%)	2 (0.1%)	0 (0%)	0 (0%)
Others	22 (0.8%)	17 (4.1%)	2 (0.1%)	3 (0.4%)	0 (0%)
Fungi					
<i>Candida tropicalis</i>	354 (13.4%)	29 (7%)	58 (4.3%)	255 (31.9%)	12 (12.9%)
<i>Candida albicans</i>	263 (9.9%)	24 (5.8%)	83 (6.2%)	134 (16.8%)	22 (23.7%)
<i>Candida glabrata</i>	91 (3.4%)	2 (0.5%)	13 (1.0%)	74 (9.3%)	2 (2.2%)
<i>Trichosporon asahii</i>	36 (1.4%)	3 (0.7%)	0 (0%)	31 (3.9%)	2 (2.2%)
<i>Candida orthopsilosis</i>	29 (1.1%)	12 (2.9%)	4 (0.3%)	13 (1.6%)	0 (0%)
<i>Candida parapsilosis</i>	21 (0.8%)	6 (1.5%)	4 (0.3%)	11 (1.4%)	0 (0%)
<i>Candida dubliniensis</i>	16 (0.6%)	1 (0.2%)	13 (1.0%)	2 (0.3%)	0 (0%)
Others	51 (1.9%)	6 (1.5%)	10 (1.5%)	16 (2.0%)	9 (9.7%)

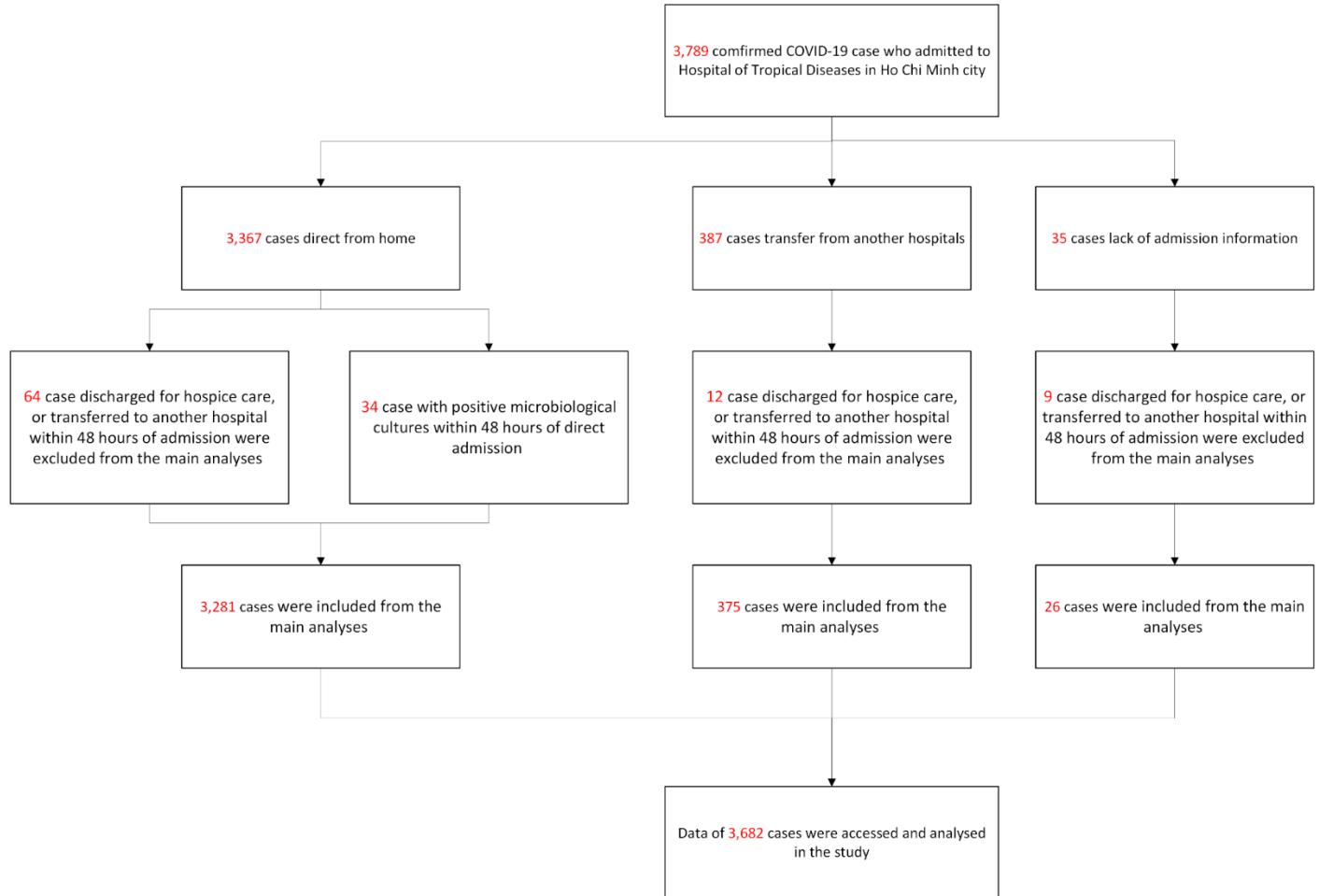
¹ n (%), Proportions (%) are calculated based on column totals

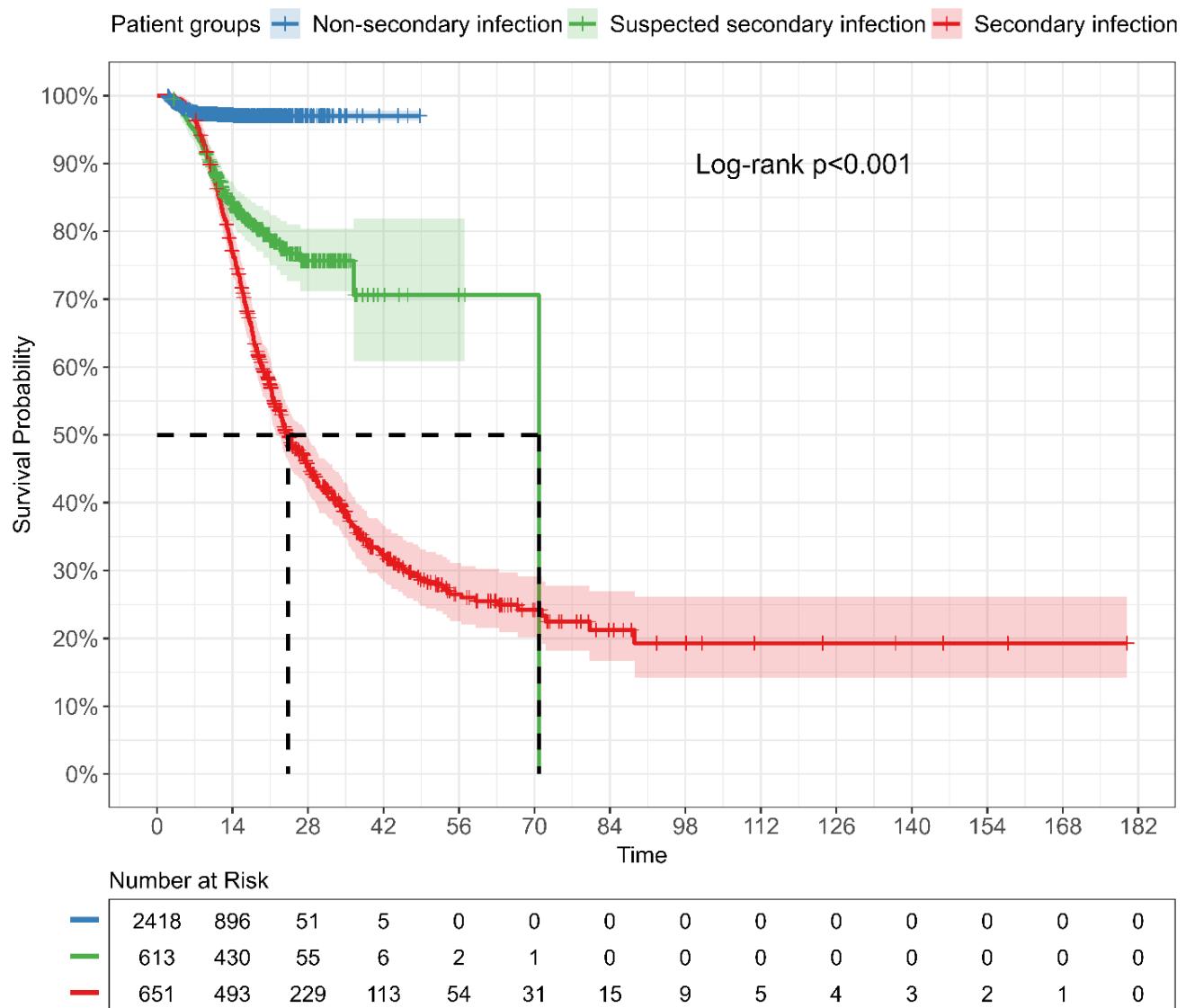
Table 4: The distribution of antimicrobial resistance in predominant bacterial and fungal pathogens in secondary infections

Gram-negative pathogens			
	Acinetobacter baumannii (N=440)	Klebsiella pneumoniae (N=334)	Pseudomonas aeruginosa (N=262)
Drug-resistant			
Multidrug-resistant (MDR)	29% (108/372)	96.0% (263/274)	65.3% (145/222)
Extensively drug-resistant (XDR)	67.5% (251/372)	0.0% (0/274)	8.1% (18/222)
Antimicrobial categories¹			
Aminoglycosides	87.3% (324/371)	81.1% (223/275)	64.4% (143/222)
Penicillins + β-lactamase inhibitors	98.9% (367/371)	92.7% (255/275)	74.5% (166/222)
Carbapenems	95.2% (354/372)	81.5% (224/275)	79.3% (176/222)
Cephalosporins (3 rd /4 th)	96% (357/372)	89.5% (246/275)	84.2% (187/222)
Fosfomycin	20.0% (1/5)	17.9% (37/207)	-
Polymyxins (colistin)	8.4% (31/371)	37% (101/273)	9.9% (22/222)
Fluoroquinolones	97% (360/371)	94.5% (260/275)	73.9% (164/222)
Tetracyclines	50% (3/6)	42.7% (70/164)	-
Trimethoprim/sulfamethoxazole	78.7% (292/371)	61.4% (167/272)	-
Gram-positive pathogens			
	Enterococcus faecium (N=197)	Staphylococcus aureus (N=57)	Enterococcus faecalis (N=33)
Drug-resistant			
Multi-drug-resistant (MDR)	67.1% (116/173)	93.5% (43/46)	5.3% (1/19)
Extensively drug-resistant (XDR)	0.0% (0/173)	0.0% (0/46)	0.0% (0/19)
Antimicrobial Categories¹			
Aminoglycosides (gentamicin)	-	66.7% (30/45)	-
Penicillins	98.8% (171/173)	95.7% (44/46)	10.5% (2/19)
Glycopeptides	57.2% (99/173)	0.0% (0/46)	5.3% (1/19)
Macrolides/lincosamides	94.7% (161/170)	95.7% (44/46)	63.2% (12/19)
Lipopeptides (daptomycin)	100.0% (39/39)	-	-
Oxazolidinones (linezolid)	1.8% (3/171)	0.0% (0/45)	5.6% (1/18)
Fluoroquinolones	98.8% (171/173)	84.4% (38/45)	57.9% (11/19)
Tetracyclines	26% (45/173)	0.0% (0/45)	89.5% (17/19)
Fungal pathogens			
	Candida tropicalis (N=355)	Candida albicans (N=263)	Candida glabrata (N=91)
Flucytosine ¹	0.4% (1/256)	1.4% (3/213)	1.6% (1/63)
Amphotericin B ¹	0.4% (1/259)	0.5% (1/214)	0.0% (0/63)
Caspofungin ¹	1.5% (4/260)	2.3% (5/214)	8.6% (5/58)
Fluconazole ¹	44.3% (109/246)	6.1% (13/213)	91.2% (31/34)
Micafungin ¹	1.2% (3/260)	1.9% (4/211)	1.6% (1/62)

Voriconazole ¹	21.4% (53/248)	1.4% (3/211)	28.6% (8/28)
¹ % resistance (number of resistant isolates / total number of isolates tested)			

Table 5: Prediction factors associated with mortality in COVID-19 patients


Characteristic	Univariate			Multivariable		
	OR	95% CI	p-value	OR	95% CI	p-value
Secondary infection group						
No secondary infection	1.00			1.00		
Suspected secondary infection	8.63	6.33, 11.9	<0.001	2.75	1.76, 4.31	<0.001
Microbiologically confirmed secondary infection	63.4	47.7, 85.4	<0.001	2.22	1.36, 3.60	0.001
Demographics						
Age group (years)						
0-18	1.00			1.00		
19-34	3.69	0.72, 67.5	0.2	1.64	0.24, 33.5	0.7
35-44	10.0	2.11, 179	0.024	2.89	0.45, 57.6	0.3
45-54	18.5	4.06, 328	0.004	4.94	0.80, 97.1	0.2
55-64	43.1	9.57, 761	<0.001	9.14	1.50, 179	0.046
65+	93.2	20.8, 1,642	<0.001	32.4	5.34, 633	0.002
Sex, male	0.80	0.67, 0.96	0.016	1.08	0.79, 1.46	0.6
Length of stay (days)	1.00	0.99, 1.01	>0.9			
Comorbidity						
Asthma	1.28	0.78, 2.00	0.3	—	—	—
Cancers	2.08	1.37, 3.08	<0.001	1.84	0.92, 3.65	0.082
Cardiovascular diseases	6.45	4.63, 9.27	<0.001	2.54	1.53, 4.30	<0.001
Chronic kidney diseases	2.91	2.36, 3.58	<0.001	1.69	1.16, 2.45	0.005
COPD	1.72	1.08, 2.656	0.017	0.67	0.30, 1.48	0.3
Diabetes	4.21	3.42, 5.23	<0.001	1.23	0.87, 1.75	0.2
AIDS	1.31	0.81, 2.03	0.2			
Hypertension	3.94	3.11, 5.06	<0.001	0.95	0.63, 1.43	0.8
Obesity	1.13	0.79, 1.58	0.5			
Supplemental oxygen						
Non-invasive	4.94	3.94, 6.26	<0.001	0.67	0.44, 1.01	0.056
Mechanical ventilation	109	82.4, 147	<0.001	79.9	51.4, 127	<0.001


Invasive procedure

ECMO	1.84	0.81, 3.81	0.12	—	—	—
Hemodialysis	16.2	11.5, 23.9	<0.001	1.28	0.83, 2.02	0.3

OR: Odds Ratio, CI: Confidence Interval, COPD: chronic obstructive pulmonary disease, AIDS: acquired immunodeficiency syndrome, ECMO: extracorporeal membrane oxygenation

Figure 1: Flow chart of the study

Figure 2: Kaplan-Meier survival estimates by patient groups

Kaplan-Meier survival curves comparing patient groups. The x-axis represents time (in days), and the y-axis represents the probability of survival. Distinct colors or line types indicate different patient groups. Vertical ticks on the curves mark censored data points. Statistical significance between survival curves was evaluated using the log-rank test.