

OPEN ACCESS

EDITED BY

Peter Veranic,
University of Ljubljana, Slovenia

REVIEWED BY

Helena Solleiro-Villavicencio,
Universidad Autónoma de la Ciudad de
México, Mexico
Alexandr Ceasovschih,
Grigore T. Popa University of Medicine and
Pharmacy, Romania

*CORRESPONDENCE

Evelin Capellari Cárnio
✉ carnioec@eerp.usp.br

RECEIVED 21 October 2022

REVISED 01 December 2022

ACCEPTED 05 December 2022

PUBLISHED 05 January 2022

CITATION

Rodrigues CM, Santos JD, Garcia BCC, Ottoni MHF, Costa KB, Costa MLB, Figueiredo VG, Macedo D, Bretas de Oliveira D, Rocha Vieira E and Cárnio EC (2022) The metabolic-immune interface of obesity in Covid-19: a role for angiotensin II and inflammatory cytokines. *Front. Immunol.* 16:1729494. doi: 10.3389/fimmu.2022.1729494

COPYRIGHT

© 2022 Rodrigues, Santos, Garcia, Ottoni, Costa, Costa, Figueiredo, Macedo, Bretas de Oliveira, Rocha Vieira and Cárnio. This is an open-access article distributed under the terms of the [Creative Commons Attribution License \(CC BY\)](#). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The metabolic-immune interface of obesity in Covid-19: a role for angiotensin II and inflammatory cytokines

Cíntia Maria Rodrigues^{1,2}, Juliane Duarte Santos³,
Bruna Carolina Chaves Garcia³,
Marcelo Henrique Fernandes Ottoni³, Karine Beatriz Costa³,
Marina Luiza Baêta Costa³, Vívian Gonzalez Figueiredo³,
Daniel Macedo³, Danilo Bretas de Oliveira^{3,4},
Etel Rocha Vieira^{3,4} and Evelin Capellari Cárnio^{1*}

¹Systemic Inflammation Physiology Laboratory, Postgraduate Degree in Fundamental Nursing, Ribeirão Preto School of Nursing, University of São Paulo, Ribeirão Preto, São Paulo, Brazil, ²Nursing Department, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil, ³Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil, ⁴Faculty of Medicine, University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, Brazil

Background: Obesity is a major risk factor for severe COVID-19, partly explained by chronic systemic low-grade inflammation and renin-angiotensin-aldosterone system (RAAS) dysregulation.

Objectives: To investigate the relationship between obesity and COVID-19 severity by measuring plasma angiotensin II (Ang II) and pro and anti-inflammatory cytokines across BMI categories.

Methods: In a cross-sectional cohort of 142 adults (Lean and Obese), including mild and severe COVID-19 cases and matched uninfected controls. Plasma Ang II, IL-1 β , IL-6, IL-10, and TNF were quantified by ELISA. Associations with BMI and clinical severity were assessed using ANOVA and correlation analyses.

Results: Obese patients showed elevated Ang II, IL-1 β , IL-6, and TNF, alongside reduced IL-10, compared to lean individuals and controls. Ang II positively correlated with BMI. Severe cases showed elevated neutrophil-to-lymphocyte ratios and greater need for ventilatory support requirements. Notably, mortality occurred exclusively among obese patients.

Conclusion: Obesity exacerbates COVID-19 severity through RAAS imbalance and, amplified inflammatory responses. Ang II and pro-inflammatory cytokines may serve as early predictive biomarkers of disease progression in obese individuals, highlighting the metabolic-immune interface as a critical determinant of COVID-19 outcomes.

KEYWORDS

angiotensin II, cytokines, interleukins, obesity, RAAS, SARS - COV - 2

Highlights

- Severe COVID-19 and death occur exclusively in obese patients.
- Obesity triggers RAAS imbalance with elevated Angiotensin II and hyperinflammation.
- Pro-inflammatory cytokines (IL-1 β , IL-6, TNF) surge while IL-10 drops in obesity.
- Angiotensin II and inflammatory markers may predict COVID-19 severity early.

1 Introduction

The renin–angiotensin–aldosterone system (RAAS) is a central hormonal network regulating blood pressure and fluid homeostasis (1–3). The classical pathway of RAAS begins when the kidneys release the renin in response to low blood pressure or reduced sodium levels (4–6). Renin cleaves angiotensinogen into angiotensin I (Ang I), which is subsequently converted into angiotensin II (Ang II), primarily in the lungs by angiotensin-converting enzyme (ACE). Ang II binds to the angiotensin II type 1 receptor (AT1R), leading to vasoconstriction, stimulation of aldosterone release from the adrenal glands, promotion of renal sodium reabsorption, and increased fluid retention (1, 2, 4, 5, 7). These effects collectively raise blood pressure and circulating volume. While essential for physiological regulation, chronic overactivation of the classical RAAS pathway is strongly associated with cardiovascular complications (2).

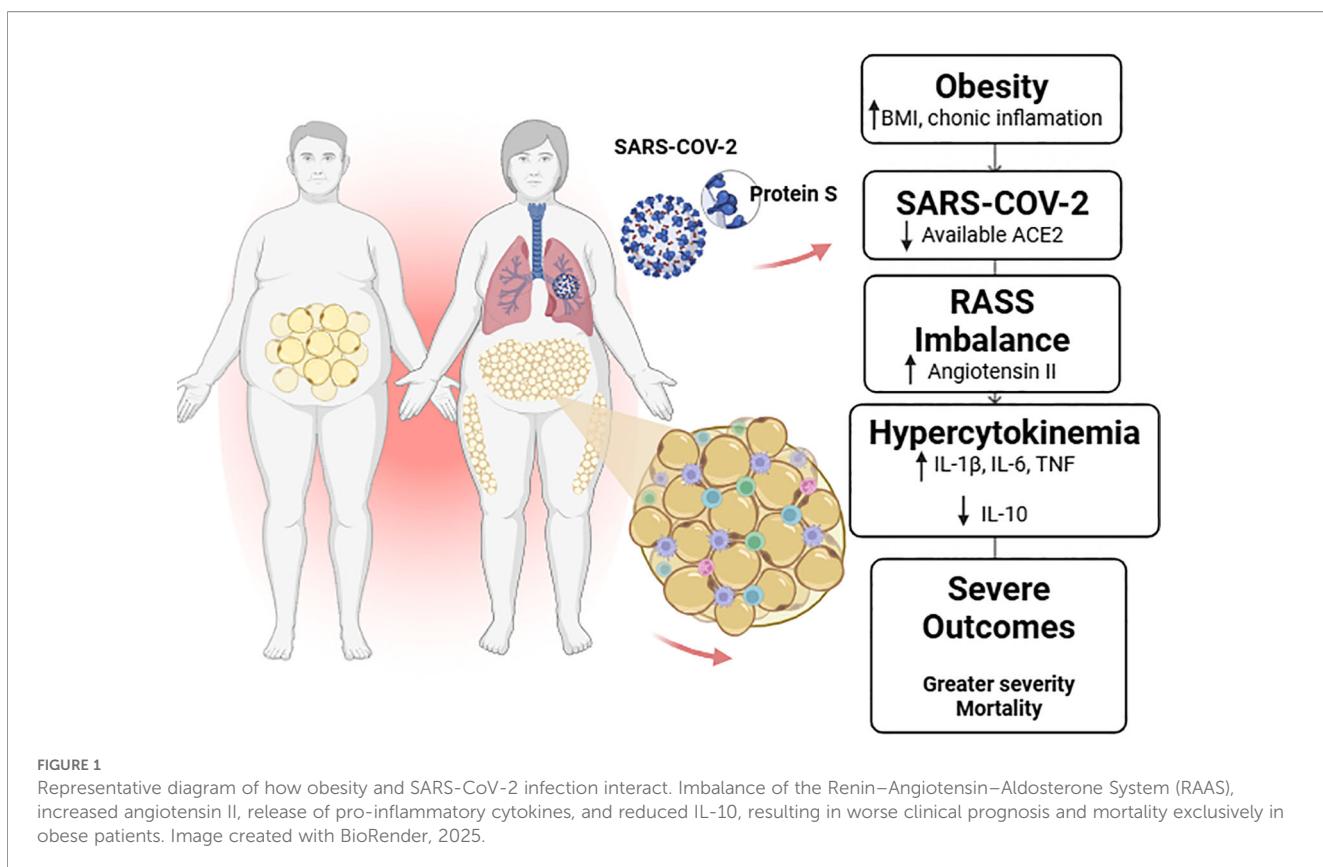
Beyond this classical axis, the RAAS also comprises a protective counter-regulatory arm, in which Ang II or Ang I are metabolized by angiotensin-converting enzyme 2 (ACE2) to form angiotensin 1–7 (Ang 1–7). This heptapeptide exerts vasodilatory, anti-inflammatory, anti-fibrotic, and cardioprotective effects through activation of the Mas receptor (MasR) (8, 9). Ang 1–7 opposes many of the actions of Ang II/AT1R by promoting nitric oxide release, reducing oxidative stress, and inhibiting cell proliferation and cytokine production (8–10).

The balance between the two main arms of the renin–angiotensin–aldosterone system (RAAS)—the classical pathway (ACE/Ang II/AT1R) and the alternative pathway (ACE2/Ang 1–7/MasR)—is essential for maintaining cardiovascular and metabolic homeostasis (11–13). During SARS-CoV-2 infection, the viral spike (S) protein binds to the ACE2 receptor to enter host cells, particularly in the lungs, heart, kidneys, and gastrointestinal tract (14, 15). This interaction of the SARS-CoV-2 virus leads to ACE2 internalization and downregulation at the cell surface, resulting in reduced enzymatic activity and consequent accumulation of Ang II. Increased Ang II availability enhances AT1R-mediated responses, thereby promoting inflammation, oxidative stress, vasoconstriction, and thrombosis (14, 15).

Such dysregulation has been implicated in the pathogenesis and severity of COVID-19, especially among individuals with comorbidities such as hypertension, diabetes, or obesity (2, 5, 16). This pathological imbalance is further amplified by chronic non-communicable diseases (NCDs), with obesity exerting a particularly

prominent effect (17). Obesity is recognized as a state of low-grade chronic inflammation – often referred to globally as “globesity” (14, 15) – and is strongly associated to more severe COVID-19 outcomes (18, 19). In individuals with obesity, prolonged viral persistence and an exacerbated inflammatory response, characterized by elevated levels of pro-inflammatory interleukins (e.g., IL-1 β and IL-6), anti-inflammatory cytokines such as IL-10, tumor necrosis factor (TNF), and altered adipokine secretion, contribute to additional disruption of RAAS signaling, amplifying Ang II-mediated effects (5, 20).

Several studies have examined RAAS components in the plasma of COVID-19 patients, with a primary focus on Ang II levels in critically ill individuals. However, the findings remain inconsistent (5, 7, 10, 21–23), and no study has systematically compared RAAS activity across lean and obese populations. In this context, our results demonstrate that Ang II levels are elevated in individuals with obesity in direct association with disease severity. Furthermore, our data challenge a previously proposed hypothesis suggesting that severe illness and systemic dysregulation would hinder the detection of RAAS metabolites. In contrast, we were able to reliably quantify Ang II at picogram levels—even in non-infected individuals—at concentrations comparable to those reported by Reindl-Schwaighofer et al. (24).


2 Methods

2.1 Study design

This was a cross-sectional cohort study involving adult patients of both sexes, aged 18 years or older, with a confirmed molecular diagnosis of SARS-CoV-2 infection by real-time RT-PCR. The study was approved by the Ethics Committees of the Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM) and the Ribeirão Preto School of Nursing, University of São Paulo (EERP/USP), under the following protocols: 55519822.4.0000.5108, 34189420.2.0000.5108, 4.557.181 (for individuals with Influenza-like illness, i.e., mild symptoms), 4.202.959 (for patients with severe acute respiratory syndrome—SARS, moderate/severe conditions), and 4.533.696. Figure 1 of this study was created using Biorender: Scientific Image and Illustration Software.

2.2 Setting

The study was conducted with partnership between UFVJM, EERP/USP, and the School Laboratory of Clinical Analysis (LEAC), encompassing 31 municipalities in the Jequitinhonha Valley macroregion. Clinical data were obtained from electronic medical records of the Santa Casa de Caridade de Diamantina and from primary care units (ViVver). Biological samples (nasopharyngeal swabs and peripheral blood) were collected between 2020 and 2024. A non-probabilistic, consecutive sampling strategy was employed to recruit patients with confirmed SARS-CoV-2 infection, either

hospitalized or in home isolation, and a control group without infection. The sample size was determined based on the local population of Diamantina, Minas Gerais (47,825 inhabitants) (25).

2.3 Participants

Participants were categorized into two BMI-based groups—lean (LN) and obese (OB)—and further stratified by COVID-19 severity (mild *vs.* severe). The control group included BMI-matched individuals who tested negative for SARS-CoV-2.

The inclusion criteria comprised adults aged 18 years or older, classified by BMI, with SARS-CoV-2 infection time between 0 and 14 days, confirmed by RT-PCR testing. Negative controls, also confirmed by the same molecular test, were included. The exclusion criteria were: individuals who had recently received the vaccination (<30 days), patients with chronic kidney disease due to altered renin production, resulting in increased levels of angiotensin II and aldosterone, and patients with incomplete clinical data.

COVID-19 Diagnosis SARS-CoV-2 RNA was detected using qualitative real-time RT-PCR. Nucleic acid extraction was performed using Maxwell® RSC 16 (Promega) and amplification using Applied Biosystems StepOne or StepOnePlus systems (ThermoFisher Scientific, USA). Target genes included N1 and N2 (2019-nCoV primer/probe sets). Samples with cycle threshold (Ct) value ≤ 40 were considered positive. Quantification of Cytokines and Adipokines

Plasma levels of IL-1 β , IL-6, IL-10 and TNF were measured using commercial ELISA kits (DuoSet®, R&D Systems). All assays were conducted according to the manufacturer's instructions, using human plasma samples stored at (2–8°C). Samples were analyzed in duplicate.

2.4 Angiotensin II measurement

Plasma Ang II concentrations were quantified using a specific ELISA kit (EIA Kit, SIGMA-ALDRICH, Merck; Catalog No. RAB0010). Blood samples were collected in pre-chilled tubes containing a protease inhibitor cocktail (Thermo Fisher 100X) to prevent peptide degradation. Plasma was processed within 3 hours and stored at –80°C. until analysis.

2.5 Statistical analysis

Data were analyzed using GraphPad Prism 8.0 and SPSS version 22.0. Quantitative variables were expressed as mean \pm standard deviation or median (interquartile range), depending on distribution, which was assessed using the Kolmogorov-Smirnov test. Categorical variables were expressed as absolute and relative frequencies. Associations between BMI and variables such as symptoms, clinical aspects, comorbidities, and outcome were assessed using the chi-square test. Comparisons between groups

were performed using one-way or two-way ANOVA followed by Tukey's post-hoc test. Pearson's correlation coefficients were calculated to assess the association between BMI and Ang II levels. Statistical significance was set at $p \leq 0.05$.

3 Results

3.1 Demographic and clinical characterization by body composition using in individuals with COVID-19

This study evaluated 150 participants recruited from domiciliary settings, Emergency Care Units (UPAs), and Intensive Care Units (ICUs). Of these, 142 individuals were included in the final analysis; eight were excluded due to incomplete questionnaire responses or missing of clinical information in medical records.

Table 1, presents the epidemiological, clinical, and laboratory characteristics stratified by body composition according to BMI. The sample was sex-matched across control and COVID-19-positive groups, comprising 87 women (61.3%) and 55 men

(38.7%). Among individuals with confirmed SARS-CoV-2 infection, 31 (21.8%) were classified as lean and 69 (48.6%) as obese—the latter representing the largest subgroup.

Laboratory parameters supported the clinical observations. Individuals with obesity of both sexes exhibited reduced hemoglobin concentrations, a factor associated with dyspnea and tachycardia. They also showed decreased total leukocyte and lymphocyte counts, accompanied by elevated neutrophil-to-lymphocyte (NLR) ratio—an established biomarker of poor and increased mortality in COVID-19. These findings reinforce the hypothesis that obesity constitutes an independent risk factor for increased susceptibility to SARS-CoV-2 infection and is associated with a higher likelihood of severe clinical manifestations.

To explore the relationship between body composition and the prevalence of comorbidities, **Table 2** summarizes the most frequent conditions observed in the study cohort. Only individuals with mild or severe COVID-19 were included in this comparison due to the limited number of moderate cases. Systemic arterial hypertension emerged as the most prevalent comorbidity, followed by chronic obstructive pulmonary disease (COPD), dyslipidemia, and cardiovascular disease.

TABLE 1 Demographic and clinical characteristics by body mass index (BMI).

Variables	LN- (n = 22)	Control	LN + (n = 31)	COVID-19	Total (n = 142)	P value
		OB- (n = 20)		OB+ (n = 69)		
Sex (n%)						
Woman	16 (18,3)	11(12,7)	18 (20,6)	42 (48,4)	87 (61,3)	0,0082
Men	6 (10,9)	9 (16,4)	13 (23,6)	27 (49,1)	55 (38,7)	
Age (mean \pm SD)	36,7 \pm 9,9	40,8 \pm 13,8	44,6 \pm 20,8	44,5 \pm 16,5	41,2 \pm 15,2	0,0017*
Clinical aspects (mean \pm SD)						
Oxygen Saturation (SpO2) (%)	98,9 \pm 0,8	98,3 \pm 1,1	96,1 \pm 2,5*	93,8 \pm 3,5*/#	—	<0,0001***
Systolic Blood Pressure (SBP) (mmHg)	116,4 \pm 13,8	120,8 \pm 14	122,7 \pm 14,7	126,2 \pm 17,3	—	0,0244
Diastolic Blood Pressure (DBP) (mmHg)	71,7 \pm 10,2	77,3 \pm 9,7	75,7 \pm 9,5	77,4 \pm 10,7	—	0,0778
Heart Rate (BPM)	71,7 \pm 12,3	77,4 \pm 9,8	87,4 \pm 12,5*	87,6 \pm 12,7*	—	<0,0003*
Laboratory aspects (mean \pm SD)						
Hematocrit (%)	41,4 \pm 4,9	42,9 \pm 4,4	43,1 \pm 7,5	41,9 \pm 6	—	0,7768
Hemoglobin (g/dL)	14,9 \pm 1,6	15,0 \pm 1,7	14,7 \pm 2,4	14,2 \pm 2,3	—	0,1483
Leukocytes (K/ μ L)	5,9 \pm 1,3	5,8 \pm 1,8	6,1 \pm 2,2	7,5 \pm 3	—	0,0179*
Neutrophils (K/ μ L)	3,3 \pm 1,4	3,4 \pm 0,8	4,6 \pm 3,3	4,8 \pm 2,3	—	0,1569
Lymphocytes (K/ μ L)	2,2 \pm 0,6	2,5 \pm 0,5	2,6 \pm 1,1	3,2 \pm 2,7	—	0,2071
N/L Ratio (K/ μ L)	0,8 \pm 0,4	0,8 \pm 0,2	0,4 \pm 0,4	1,9 \pm 1,5*/#	—	<0,0001***

Source: Author (2025).

Categorical variables are expressed as frequencies (absolute - n, relative %). These are followed by cross-tabulation analysis using the Chi-square test, comparing BMI to clinical and laboratory parameters. Continuous variables were calculated using the One-Way ANOVA test with Tukey's *post hoc* test.

*Indicates significant differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes significant intragroup difference (positives only) to assess the effect of BMI, LN+ with OB+. The p-value represents an intergroup comparison of $p < 0.05$. Results below this value are considered highly significant and are expressed by the symbols * corresponding to $p < 0.0003$ and < 0.0005 and/or *** $p < 0.0001$. LN-, lean negative (control); OB-, obese negative (control). LN+, lean positive COVID-19; OB+, obese positive COVID-19.

TABLE 2 Demographic and clinical characteristics, comorbidities, and outcomes according to disease severity and BMI.

Variables	LN (n=20)	Influenza-like Illness (ILI)	LN (n=12)	Severe acute respiratory syndrome (SARS)	Total (n=100)	P value
		OB (n=43)		OB (n=25)		
Sex (n %)						
Female	15(24,6)	26 (42,6)	4 (6,6)	16 (26,2)	61	
Male	5 (12,8)	17 (43,6)	8(20,5)	9 (23,1)	39	<0,0001***
Age (mean ± SD)	34,5 ± 11,2	39,3 ± 10,8	68,6 ± 14,4	62,2 ± 21,3	51,2 ± 14,4	<0,0001***
Signs and symptoms (n %)						
Cough	6 (10,5)	25(43,8)	9 (15,8)	17 (29,8)	57	0,344
Runny nose	13 (31)	20 (47,6)	2 (4,8)	7 (66,6)	42	0,593
Fever	5 (14,3)	4 (31,4)	7 (20)	12(34,2)	35	0,452
Headache	5 (12,8)	15 (66,6)	3 (7,7)	5 (12,8)	39	0,548
Anosmia	14 (27,5)	25 (49,0)	3 (5,8)	9 (17,6)	51	0,350
Dysgeusia	8 (21,1)	23 (60,5)	2 (5,2)	5 (13,2)	38	0,571
Dyspnea	3 (7,7)	11 (28,2)	9 (23,1)	6 (41,0)	39	0,449
Desaturation	16 (13,0)	1 (2,2)	10(21,8)	19 (41,3)	46	0,667
Comorbidities (n %)						
Hypertension	3 (12,0)	6 (24,0)	7 (28,0)	9 (36,0)	25	0,587
Dyslipidemia	2 (13,3)	8 (53,3)	0 (0)	5 (33,4)	15	0,005*
Diabetes Mellitus	0 (0)	3 (50,0)	2 (33,4)	1 (16,6)	6	0,196
Respiratory disease	1 (9,1)	2 (18,2)	2 (18,2)	6 (54,5)	11	0,449
Cancer	0 (0)	0 (0)	1 (33,3)	2 (66,6)	3	0,504
Mental Illness	1 (11,0)	4 (44,5)	0 (0)	4 (44,5)	9	0,169
Clinical outcome (n%)						
Recovery	20 (22,2)	43 (47,8)	9 (10,0)	18 (20,0)	90	0,256
Death	0 (0)	0 (0)	2 (20,0)	8 (80,0)	10	

Source: Author (2025).

Categorical variables are expressed as frequencies (absolute - n, relative %). These are followed by cross-tabulation analysis using the Chi-square test, comparing BMI to signs and symptoms, comorbidities, and clinical outcome.

*Indicates significant differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes significant intragroup difference (positives only) to assess the effect of BMI. LN+ with OB+. The p-value represents an intergroup comparison of $p < 0.05$. Results below this value are considered highly significant and are expressed by the symbols * corresponding to $p < 0.0003$ and < 0.0005 and/or *** $p < 0.0001$. LN-, lean negative (control); OB-, obese negative (control). LN+, lean positive COVID-19; OB+, obese positive COVID-19.

3.2 Factors associated with severity in COVID-19 patients

Focusing on disease severity, Table 3 depicts a cyclical clinical profile in which obesity may contribute to the development of comorbidities, while SARS-CoV-2 infection in obese individuals further alters physiological parameters, aggravating their health status. Systolic and diastolic blood pressure were slightly elevated in hospitalized patients with severe disease, including those without COVID-19, indicating that obesity alone was sufficient to alter these parameters. Heart rate showed an upward trend across all infected groups. Interestingly, ventilatory variables showed that oxygen

saturation in critically ill patients dropped significantly, consistent with the findings reported above. Patients in this group also required non-invasive ventilation and, in many cases, invasive mechanical ventilation through intubation. These observations highlight the impaired lung expansion and compromised ventilatory capacity in critically ill individuals—particularly patients with obesity, who exhibited poorer outcomes.

As shown in Table 3, patients with severe COVID-19 (requiring hospitalization) presented laboratory abnormalities such as reduced hematocrit and hemoglobin, thrombocytopenia, leukocytosis, lymphocytosis, and neutrophilia. The increase in the neutrophil-to-lymphocyte ratio (NLR), an inflammatory biomarker, with

TABLE 3 Baseline laboratory and blood gas variables according to COVID-19 severity.

Variables	ILI (DP)- ⁿ (%) (n = 59)	SARS (DP)- ⁿ (%) (n = 48)	P value
BMI (kg/m ²)	25,9 ± 5,3	31,7 ± 5,8	<0,0001***
Systolic Blood Pressura (mmHg)	126,38 ± 19,71	128, 33 ± 9,83	<0,0001***
Diastolic Blood Pressura (mmHg)	72,85 ± 12,51	78, 33 ± 9, 83	<0,0001***
Heart Rate (bpm)	–	84,93 ± 14,99	–
Oxygen Saturation (%)	94,84 ± 1,55	90,90 ± 6,0	0,1838
Ventilatory parameters			
Mechanical Ventilation n (%)	2 (3,4)	12 (25)	
Round-glass Opacity on Imaging (Chest CT)	7 (11,9)	33 (68,8)	
Laboratory tests (mean ± SD)			
Hematocrit (%)	31,59 ± 21,80	22,87 ± 20,65	0,0417
Hemoglobin (g/dL)	10,64 ± 7,75	7,64 ± 6,88	0,0475
Leukocytes (10 ³ /μL)	4,58 ± 3,77	5,41 ± 4,09	0,2643
Neutrophils(10 ³ /μL)	3,74 ± 2,75	4,46 ± 3,51	0,2354
Lymphocytes (10 ³ /μL)	2,71 ± 2,38	7,88 ± 8,36	<0,0001***
Neutrophil/Lymphocyte Ratio (NLR)	0,29 ± 1,18	0,32 ± 0,58	0,8481
Platelets (10 ³ /μL)	129 ± 125	85,96 ± 145,5	0,0850
CRP (mg/L)	0	81,15 ± 31,86	–
D-Dimer (ng/mL)	0	44,22 ± 166,4	–
Arterial blood gas (mean ± SD)			
Blood pH	–	7,4 ± 2,8	–
Oxygen Pressure (pO ₂)	–	75,5 ± 28,4	–
Carbon Dioxide Pressure (pCO ₂)	–	43,8 ± 14,4	–
Bicarbonate (HCO ₃)	–	26,3 ± 6,0	–
Sodium (Na - mEq/L)	–	140 ± 6,9	–
Potassium (K - mEq/L)	–	1,2 ± 1,0	–
Creatinine (mg/dL)	–	1,2 ± 1,0	–
Urea (mg/dL)	–	45,4 ± 24,1	–
Lactate Dehydrogenase (LDH) (U/L)	–	573,1 ± 309,8	–
Clinical outcome (n%)			
Recovery	65 (100)	35 (73)	
Death	0	10 (20,8)	<0,0001***

Source: Author (2025).

Categorical variables are expressed as frequencies (absolute - n, relative %). Cross-tabulation analysis is followed by the Chi-square test, comparing BMI to clinical and laboratory parameters in ILI and SARS patients.

*Indicates significant differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes significant intragroup difference (positives only) to assess the effect of BMI, LN+ with OB+. The p-value represents an intergroup comparison of p < 0.05. Results below this value are considered highly significant and are expressed by the symbols * corresponding to p < 0.0003 and < 0.0005 and/or *** p < 0.0001. LN-, lean negative (control); OB-, obese negative (control). LN+, lean positive COVID-19; OB+, obese positive COVID-19.

values above 2.21, is a predictor of ICU hospitalization and is associated with an 8% higher risk of death compared to those with mild disease (managed at home), being positively correlated with worse prognosis. Biochemical parameters such as C-reactive protein, D-dimer and arterial blood gas values, although altered, were assessed only in critically ill patients, in accordance with SUS

hospital care priority protocols, and therefore it was not possible to compare. Regarding clinical outcome all patients with mild disease achieved complete recovery, whereas among severe cases, 7 patients (16.7%) died, all of whom belonged to the obese BMI group. This finding demonstrates a positive association between obesity and worse outcomes in COVID-19.

3.3 Overactive cytokine immune response

Our findings indicate immunological impairment in this population, characterized by cytokine hyperactivity, hypercytokinemia, observed both in obese patients with mild clinical symptoms and, more prominently, in those with severe obesity. As shown in Figures 2–5, levels of IL-1 β , IL-6, TNF and IL-10 were significantly higher levels in obese individuals, compared to lean subjects, with even greater elevations in patients worse clinical outcomes.

3.4 A positive correlation between plasma Ang II levels and obesity is associated with greater clinical severity in individuals infected with COVID-19

Plasma Ang II levels (pg/mL) were measured in all COVID-19 patients and control subjects. The analysis included a clinical subdivision, in which lean and non-severe obese patients were compared with their controls, and patients with severe conditions with their respective/matched controls. Interestingly and consistent with the findings of Liu et al. (21) and Wu et al. (26) plasma levels of Ang II in obese patients with COVID-19 were significantly higher than those in non-severe negative and reaching even higher values in individuals with severe disease (Figure 6).

To determine whether the elevation of angiotensin II could be associated with obesity, we performed a comparison between mild and severe obese COVID-19-positive patients, and Pearson's correlation between Ang II and BMI. As expected, there was a positive correlation between plasma angiotensin II levels and higher BMI, indicating that obesity may alter the RAAS axis, leading to hyperinflammation and greater disease severity.

4 Discussion

Our study demonstrates that obesity substantially exacerbates COVID-19 severity by disrupting the RAAS and amplifying inflammatory responses (27, 28). Obese individuals infected with SARS-CoV-2 exhibited elevated plasma levels of Ang II, IL-1 β , IL-6, and TNF, alongside reduced IL-10 concentrations, indicating a hyperinflammatory and immunologically dysregulated state (17, 29, 30). Moreover, the positive association between Ang II levels BMI supports the hypothesis that excess adiposity enhances RAAS activation and contributes to disease progression (11, 31, 32).

Obesity, also known as Adiposity-Based Chronic Disease (ABCD), is increasingly recognized as a chronic immunometabolic disease characterized by persistent endocrine, metabolic, and inflammatory disorders (4, 33). During the COVID-19 pandemic, obesity emerged as one of the strongest predictors of severity, with individuals presenting a

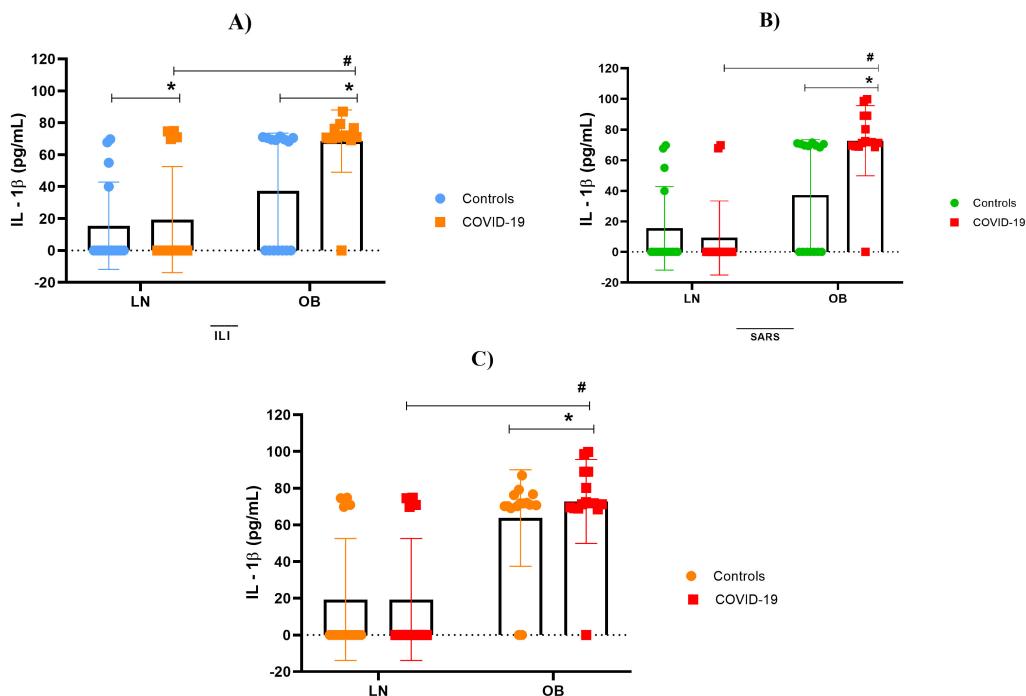


FIGURE 2

Interleukin 1 β concentration. (A) IL-1 β stratified by BMI, between controls and mild cases with flu-like illness; (B) IL-1 β stratified by BMI, between controls and severe cases with severe acute respiratory syndrome; (C) IL-1 β comparison between flu-like illness and severe acute respiratory syndrome. Source: Author (2025). (A–C) were calculated using the Two-Way ANOVA test with Tukey's post-hoc test. * Indicates significant differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes significant intragroup difference (positives only) to assess the effect of BMI. LN+ with OB+ $p < 0.05$. LN-, negative lean (control); OB-, negative obese (control). LN+, lean positive COVID-19; OB+, obese positive COVID-19. SG, Flu-Like Syndrome (mild/moderate manifestations); SARS, Severe Acute Respiratory Syndrome (severe manifestations).

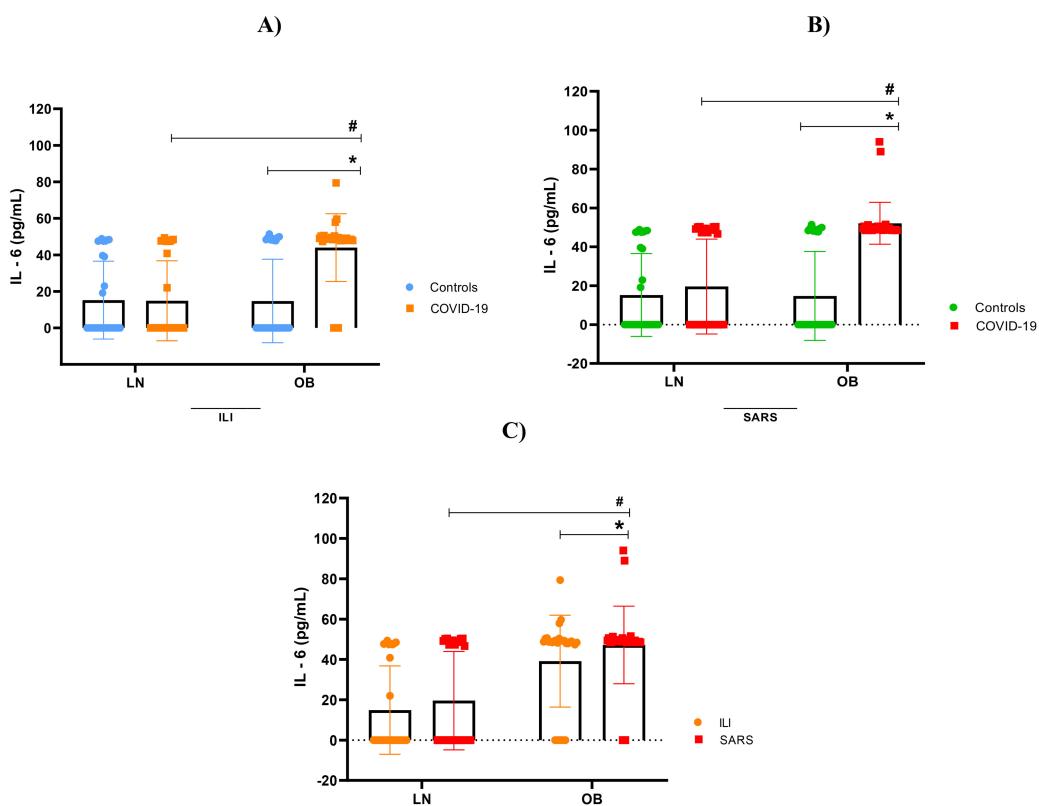


FIGURE 3

Interleukin-6 concentration. (A) IL-6 stratified by BMI, between controls and mild cases with flu-like illness; (B) IL-6 stratified by BMI, between controls and severe cases with severe acute respiratory syndrome; (C) IL-6 comparison between flu-like illness and severe acute respiratory syndrome. Source: Author (2025). (A–C) were calculated using the Two-Way ANOVA test with Tukey's post-hoc test. * Indicates significant differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+ p < 0.05. LN-, negative lean (control); OB-, negative obese (control). LN+, lean positive COVID-19; OB+, obese positive COVID-19. SG, Flu-Like Syndrome (mild/moderate manifestations); SARS, Severe Acute Respiratory Syndrome (severe manifestations).

BMI $\geq 30 \text{ kg/m}^2$ (4, 11, 34) demonstrating a markedly greater need for intensive care and mechanical ventilation (19, 35, 36). Thus, obesity should be considered not only a comorbidity but also a biological condition that amplifies the host's vulnerability to viral pathogens.

The coexistence of chronic systemic inflammation and SARS-CoV-2 infection establishes a milieu that predisposes individuals to immune dysregulation and RAAS perturbation (4). Adipose tissue expresses angiotensinogen and other RAAS components, and excess adiposity enhances Ang II production through adipocyte hypertrophy, increased free fatty acids, and high-fat dietary patterns (37–39). Moreover, the upregulation of ADAM17, frequently observed in obesity, promotes ACE2 shedding and TNF release, further aggravating inflammation (40, 41). Collectively, these alterations precondition individuals with obesity to stronger RAAS activation, oxidative stress, and endothelial dysfunction even prior to viral exposure (5, 7, 10, 24, 26, 42–44).

Upon SARS-CoV-2 infection, these vulnerabilities become more pronounced. Viral engagement of ACE2 reduces its availability on the cell surface, shifting RAAS signaling (45, 46) toward the classical ACE/Ang II/AT1R axis (8, 47–49) and weakening the counterregulatory Ang-(1–7)/MasR and alamandine/MrgD pathways (50, 51). As a result, Ang II

accumulates and drives vasoconstriction, mitochondrial dysfunction, NF- κ B activation, and widespread endothelial injury (7, 11, 52). Concomitantly, the reduction in ACE2-derived peptides diminishes anti-inflammatory control, facilitating uncontrolled cytokine production (28, 31, 53). TLR-mediated recognition of viral components further fuels innate immune activation (38, 54), triggering synthesis of IL-1 β , IL-6, TNF, and IFN- γ (55, 56), and establishing a feed-forward inflammatory loop strongly implicated in severe COVID-19 (30, 57, 58).

Within this immunometabolic landscape, the synergistic interplay between obesity and SARS-CoV-2 becomes evident. In our cohort, individuals with obesity showed elevated plasma Ang II, heightened concentrations of IL-1 β , IL-6, and TNF, and reduced IL-10, supporting the presence of a dysregulated inflammatory state exacerbated by viral infection (48, 59, 60). The positive association between Ang II and BMI reinforces the mechanistic link between adiposity and RAAS hyperactivation (5, 61, 62). Furthermore, although women predominated in our sample—reflecting global patterns of higher obesity prevalence—no significant sex differences in Ang II levels were observed. This may be explained by the near-menopausal age of many participants, a period in which protective effects of estradiol and progesterone on ACE2 and AT2R signaling

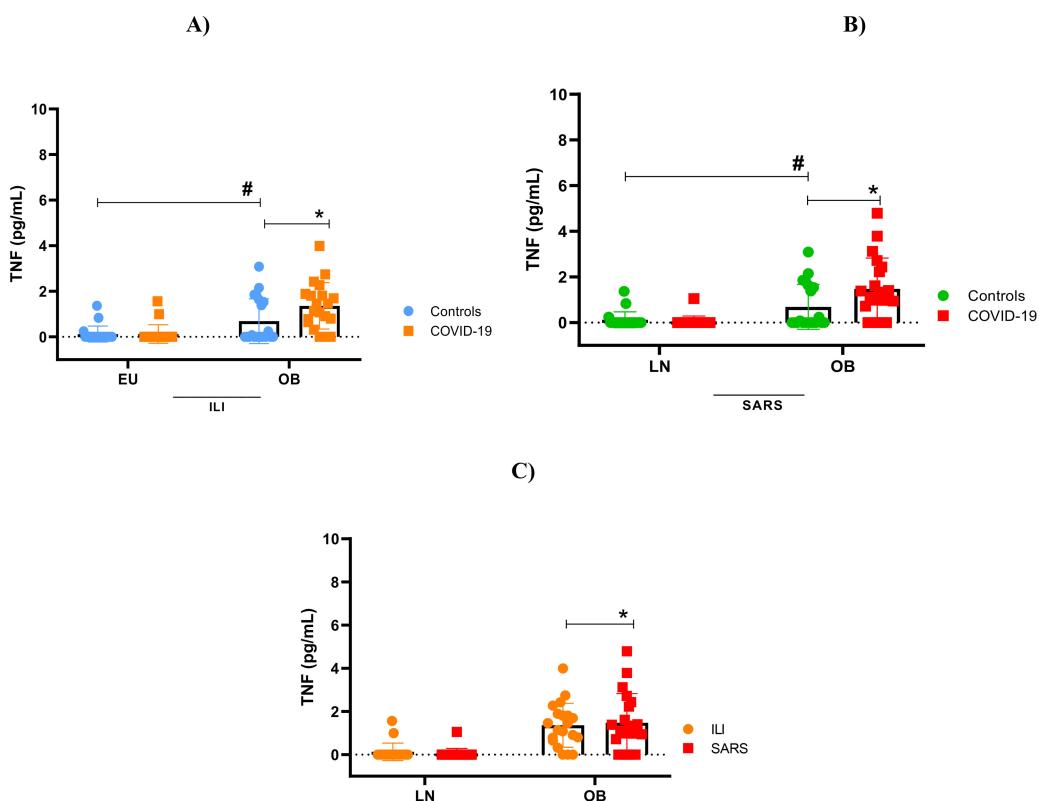


FIGURE 4

Tumor necrosis factor (TNF) concentration. **(A)** TNF stratified by BMI, between controls and mild cases with flu-like illness; **(B)** TNF stratified by BMI, between controls and severe cases with severe acute respiratory syndrome; **(C)** TNF comparison between flu-like illness and severe acute respiratory syndrome. Source: Author (2025). **(A–C)** were calculated using the Two-Way ANOVA test with Tukey's post-hoc test. * Indicates significant differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes significant intragroup difference (positives only) to assess the effect of BMI, LN+ with OB+ $p < 0.05$. LN-, negative lean (control); OB-, negative obese (control). LN+, lean positive COVID-19; OB+, obese positive COVID-19. SG, Flu-Like Syndrome (mild/moderate manifestations); SARS, Severe Acute Respiratory Syndrome (severe manifestations).

begin to diminish (63, 64). Thus, hormonal status, age, and adiposity appear to collectively shape RAAS responsiveness during SARS-CoV-2 infection (24, 43).

These immunometabolic interactions are further compounded by cardiometabolic comorbidities commonly associated with obesity (65). Hypertension, metabolic syndrome, and dyslipidemia converge mechanistically on oxidative stress, endothelial dysfunction, and RAAS activation (7, 66). Hypertriglyceridemia and elevated LDL promote lipid deposition and vascular remodeling, accelerating atherogenesis and contributing to endothelial vulnerability during viral infection (65, 67). In addition, lipid raft enrichment of ACE2 facilitates SARS-CoV-2 entry, suggesting that dyslipidemia may not only represent a comorbidity but also potentiate viral infectivity (2, 67–69). Consequently, the constellation of cardiometabolic alterations in individuals with obesity strengthens the biological rationale linking adiposity to more severe COVID-19 outcomes (67, 70–72).

Clinically, the inflammatory markers observed in our cohort provide further support for this mechanistic model. Leukocytosis, neutrophilia, elevated neutrophil-to-lymphocyte ratio (NLR), and increased D-dimer levels correlated with severity, aligning with prior studies identifying these markers as prognostic indicators

(21, 40, 73–75). The progression of cytokine elevation and coagulopathy between days 7 and 10 of symptom onset—previously associated with mortality—was consistent with the systemic inflammatory signaling induced by heightened Ang II activity (21, 23, 48, 49, 59, 76). Although lymphocyte count and CRP showed inconsistent associations across studies, our findings underscore the value of immunometabolic biomarkers, particularly Ang II, NLR, and D-dimer, in risk stratification (32, 48, 77–79).

Finally, although Ang-(1–7) (80) and alamandine were not measured, our preliminary data point to a trend of reduced expression of MasR and MrgD receptors (50), which implies that obesity and SARS-CoV-2 infection may contribute to decreased protective RAAS signaling (4, 40, 81). Taken together, our findings provide compelling evidence for a dual-hit model in which obesity establishes a primed inflammatory and RAAS-altered baseline, and SARS-CoV-2 amplifies these disruptions, culminating in severe immunometabolic imbalance (5, 7, 43). This framework advances current understanding of COVID-19 pathophysiology and reinforces the need to consider adiposity-driven biological mechanisms when evaluating risk and therapeutic strategies.

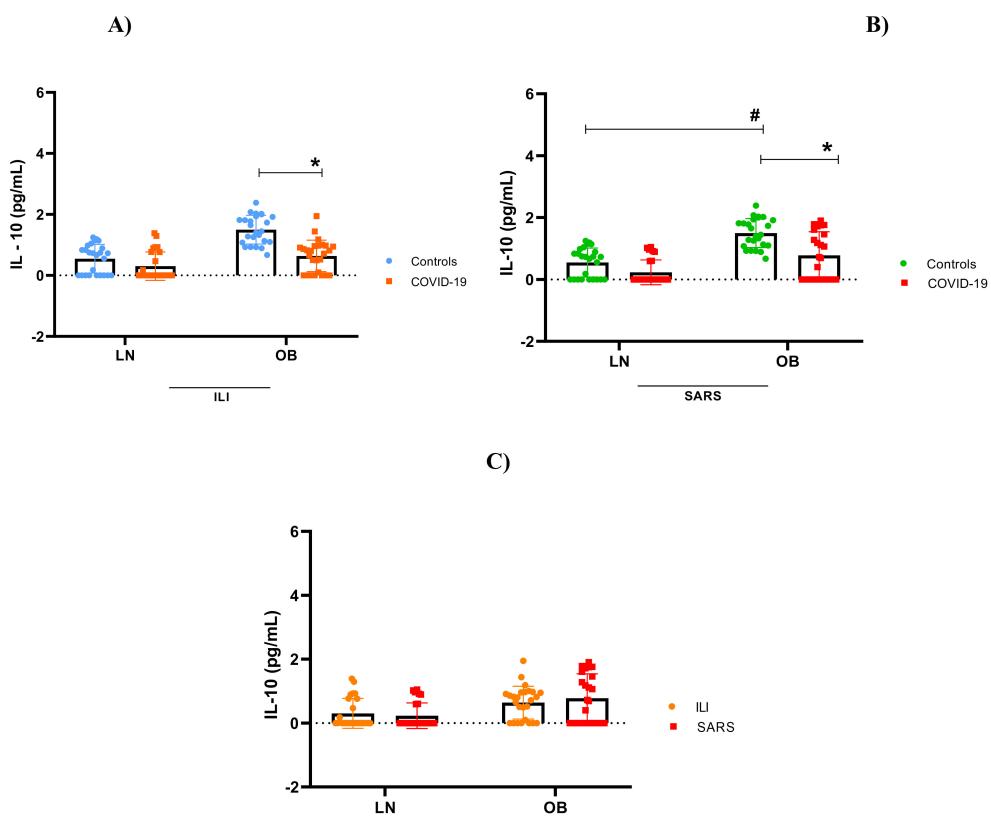


FIGURE 5

Interleukin - 10 concentration. (A) IL-10 stratified by BMI, between controls and mild cases with flu-like illness; (B) IL-10 stratified by BMI, between controls and severe cases with severe acute respiratory syndrome; (C) IL-10 comparison between flu-like illness and severe acute respiratory syndrome. Source: Author (2025). (A–C) were calculated using the Two-Way ANOVA test with Tukey's post-hoc test. * Indicates significant differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes significant intragroup difference (positives only) to assess the effect of BMI, LN+ with OB+ $p < 0.05$. LN-, negative lean (control); OB-, negative obese (control). LN+, lean positive COVID-19; OB+, obese positive COVID-19. SG, Flu-Like Syndrome (mild/moderate manifestations); SARS, Severe Acute Respiratory Syndrome (severe manifestations).

The limitations of this study include the presence of cardiometabolic comorbidities in all body composition groups, which may have acted as confounding factors and reduced our ability to isolate the specific contribution of obesity. Furthermore, the absence of important metabolic markers—such as leptin, adiponectin, resistin, and insulin—and the lack of direct measurements of Ang-(1-7), aldosterone, and renin limited a more detailed assessment of the immunometabolic pathways and the RAAS involved. Future perspectives of the study will be to conduct cardiovascular and metabolic biomarkers to further deepen the mechanistic understanding of obesity-related vulnerability to SARS-CoV-2.

5 Conclusion

This study identified obesity as a key biological factor that exacerbated COVID-19, demonstrating a direct association between increased BMI, elevated Ang II, and heightened pro-inflammatory cytokines, alongside reduced IL-10. By quantifying Ang II across different BMI categories and clinical severity levels, including mild and non-hospitalized cases, we provide

mechanistic insights into the metabolic-immune interface of obesity. Adiposity-related, inflammatory, and RAAS markers emerge as promising targets for clinical assessment and potential therapeutic interventions.

6 Novelty

This study reveals that obesity markedly worsens COVID-19 severity through dysregulation of the renin–angiotensin–aldosterone system (RAAS) and a hyperinflammatory response. We observed a strong positive correlation between body mass index (BMI) and plasma Ang II levels, indicating that excess visceral adiposity amplifies RAAS activation and disease progression. Obese patients also showed elevated IL-1 β , IL-6, TNF, reduced IL-10, higher neutrophil-to-lymphocyte ratios (NLR), and an increased need for ventilatory support, with adverse outcomes—including mortality—occurring predominantly in this population. These findings provide a mechanistic explanation, supporting a dual-hit model in which obesity primes immunometabolic vulnerability that is exacerbated by SARS-CoV-2 infection.

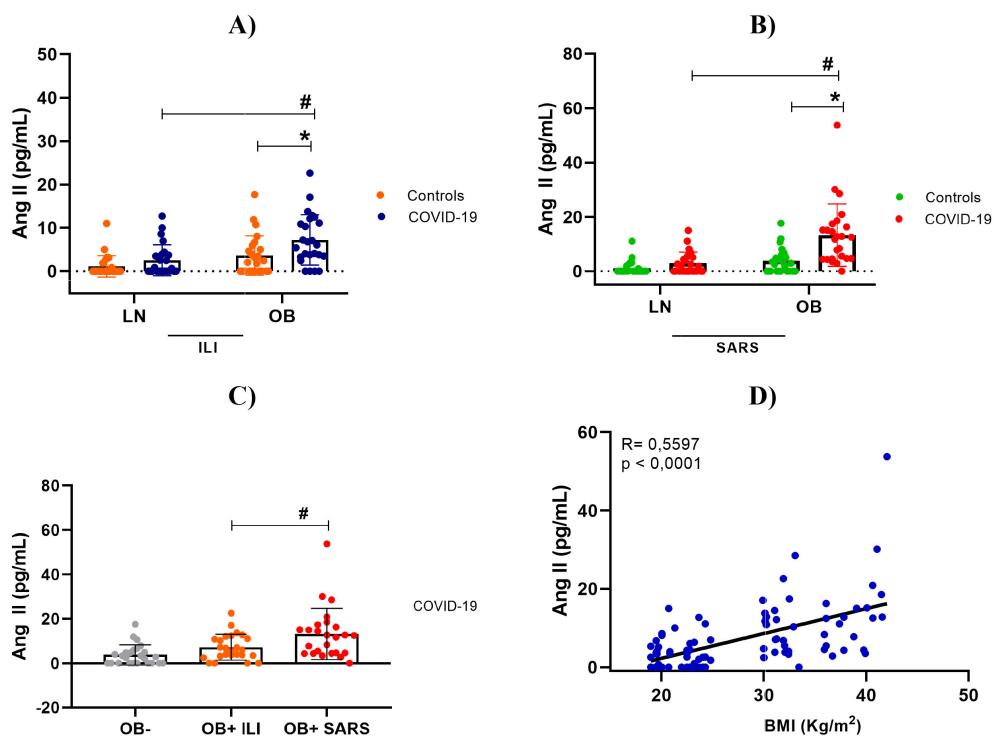


FIGURE 6

Plasma angiotensin II levels. (A) Lean and stratified by BMI, between controls and mild cases with flu-like illness; (B) Lean and obese individuals with SARS, stratified by BMI, between controls and severe cases with severe acute respiratory syndrome; (C) Comparison of Angiotensin II levels between obese individuals (control and COVID-19), in both severity levels. (D) Correlation between BMI and Angiotensin II concentration. Source: Author (2025). (A–C) were calculated using two-way ANOVA with Tukey's post-hoc test. (D) was calculated using Pearson's correlation. * Indicates significant differences in intergroup comparisons (positive versus negative) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes significant intragroup difference (positives only) to assess the effect of BMI, LN+ with OB+ $p < 0.05$. LN-, lean negative (control); OB-, obese negative (control). LN+, lean positive for COVID-19; OB+, obese positive for COVID-19. SG, Influenza-like syndrome (mild/moderate manifestations); SARS, Severe acute respiratory syndrome (severe manifestations).

7 Significance

This study provides novel mechanistic evidence that obesity exacerbates COVID-19 severity through RAAS dysregulation and heightened inflammatory responses, with a direct correlation between BMI and Ang II levels. Elevated plasma Ang II, IL-1 β , IL-6, and TNF, alongside reduced IL-10, identify potential biomarkers for early risk stratification. Clinically, obese patients exhibited higher NLR, greater ventilatory requirements, and mortality restricted to this group, underscoring their vulnerability. These findings advance the understanding of adiposity as an active endocrine contributor to infectious disease outcomes and highlight translational opportunities for risk assessment and therapeutic strategies targeting RAAS and inflammation.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

Ethics statement

The studies involving humans were approved by Ethics Committees of the Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM) and the Ribeirão Preto School of Nursing, University of São Paulo (EERP/USP), under the following protocols: 55519822.4.0000.5108, 34189420.2.0000.5108, 4.557.181 (for individuals with Influenza-like illness, i.e., mild symptoms), 4.202.959 (for patients with severe acute respiratory syndrome—SARS, moderate/severe conditions), and 4.533.696. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.

Author contributions

CMR: Conceptualization, Writing – original draft, Writing – review & editing, Investigation, Methodology. JDS: Methodology, Writing – original draft, Data curation. BCCG: Data curation, Methodology, Writing – original draft. MHFO: Data curation, Methodology, Writing – original draft. KBC: Data curation, Methodology, Writing – original draft. MLBC: Data curation, Methodology, Writing – original draft. VGF: Data curation, Methodology, Writing – original draft. DM:

Data curation, Methodology, Writing – original draft. DBO: Data curation, Methodology, Writing – original draft. ERV: Writing – original draft, Formal analysis, Resources, Supervision, Writing – review & editing. ECC: Formal analysis, Writing – original draft, Writing – review & editing, Conceptualization, Funding acquisition, Project administration.

Funding

The author(s) declared financial support was received for this work and/or its publication. Ribeirão Preto School of Nursing, University of São Paulo (EERP/USP); School Laboratory of Clinical Analysis (LEAC), Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM); Coordination for the Improvement of Higher Education Personnel (CAPES) – Brazil, PROEXC Program.

Acknowledgments

School of Nursing of Ribeirão Preto, University of São Paulo (EERP/USP); Laboratory of Clinical Analysis (LEAC), of the Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM); Coordination for the Improvement of Higher Education Personnel (CAPES) – Brazil, PROEXC Program.

References

1. Armaly Z, Kinaneh S, Skorecki K. Renal manifestations of Covid-19: physiology and pathophysiology. *J Clin Med.* (2021) 10:1216. doi: 10.3390/jcm10061216
2. Kanugula AK, Kaur J, Batra J, Ankireddypalli AR, Velagapudi R. Renin-angiotensin system: updated understanding and role in physiological and pathophysiological states. *Cureus.* (2023) 15:e40725. doi: 10.7759/cureus.40725
3. Novaes Rocha V. Viral replication of SARS-CoV-2 could be self-limitative – The role of the renin-angiotensin system on COVID-19 pathophysiology. *Med Hypotheses.* (2020) 145:110330. doi: 10.1016/j.mehy.2020.110330
4. Platt D, Bose A, Rhrissorakrai K, Levovitz C, Parida L. Epidemiological topology data analysis links severe COVID-19 to RAAS and hyperlipidemia associated metabolic syndrome conditions. *Bioinformatics.* (2024) 40:i199–207. doi: 10.1093/bioinformatics/btae235
5. Camargo RL, Bombassaro B, Monfort-Pires M, Mansour E, Palma AC, Ribeiro LC, et al. Plasma angiotensin II is increased in critical coronavirus disease 2019. *Front Cardiovasc Med.* (2022) 9:1–9. doi: 10.3389/fcvm.2022.847809
6. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. *New Engl J Med.* (2020) 382:1653–9. doi: 10.1056/NEJMsr2005760
7. Rieder M, Wirth L, Pollmeier L, Jeserich M, Goller I, Baldus N, et al. Serum ACE2, angiotensin II, and aldosterone levels are unchanged in patients with COVID-19. *Am J Hypertension.* (2021) 34:278–81. doi: 10.1093/ajh/hpa169
8. Aksoy H, Karadag AS, Wollina U. Angiotensin II receptors - impact for COVID-19 severity. *Dermatologic Ther.* (2020) 33:e13989. doi: 10.1111/dth.13989
9. Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin-angiotensin system: Basic and clinical aspects-A general perspective. *Endocrinología Diabetes y nutrición.* (2022) 69:52–62. doi: 10.1016/j.endinu.2021.05.012
10. Henry BM, Benoit S, Lippi G, Benoit J. Letter to the Editor - Circulating plasma levels of angiotensin II and aldosterone in patients with coronavirus disease 2019 (COVID-19): A preliminary report. *Prog Cardiovasc Diseases.* (2020) 63:702–3. doi: 10.1016/j.pcad.2020.07.006
11. Obukhov AG, Stevens BR, Prasad R, Calzi SL, Boulton ME, Raizada MK, et al. Sars-cov-2 infections and ace2: Clinical outcomes linked with increased morbidity and mortality in individuals with diabetes. *Diabetes.* (2020) 69:1875–86. doi: 10.2337/dbi20-0019
12. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. *Cell.* (2020) 181:271–280.e8. doi: 10.1016/j.cell.2020.02.052
13. Sarzani R, Giulietti F, Di Pentima C, Giordano P, Spannella F. Disequilibrium between the classic renin-angiotensin system and its opposing arm in SARS-CoV-2-related lung injury. *Am J Physiol Lung Cell Mol Physiol.* (2020) 319:L325–36. doi: 10.1152/ajplung.00189
14. Bolsoni-Lopes A, Furieri L, Alonso-Vale MIC. Obesity and covid-19: a reflection on the relationship between pandemics. *Rev gaúcha enfermagem.* (2021) 42:e20200216. doi: 10.1590/1983-1447.2021.20200216
15. Khan M, Adil SF, Alkhathlan HZ, Tahir MN, Saif S, Khan M, et al. COVID-19: A global challenge with old history, epidemiology and progress so far. *Molecules.* (2020) 26:39. doi: 10.3390/molecules26010039
16. Soeroto AY, Soetedjo NN, Purwiga A, Santoso P, Kulsum ID, Suryadinata H, et al. Effect of increased BMI and obesity on the outcome of COVID-19 adult patients: A systematic review and meta-analysis. *Diabetes Metab Syndrome: Clin Res Rev.* (2020) 14:1897–904. doi: 10.1016/j.dsrx.2020.09.029
17. Jang S, Hong W, Moon Y. Obesity-compromised immunity in post-COVID-19 condition : a critical control point of chronicity. *Front Immunol.* (2024) 15:1–11. doi: 10.3389/fimmu.2024.1433531
18. Aghili R, Honardoost M, Khamseh ME. COVID-19: Case fatality and ACE2 inhibitors treatment concerns in patients with comorbidities. *Med J Islamic Republic Iran.* (2020) 34:1–6. doi: 10.47176/mjiri.34.147
19. Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected — obesity, impaired metabolic health and COVID-19. *Nat Rev Endocrinol.* (2021) 17:135–49. doi: 10.1038/s41574-020-00462-1
20. Rodrigues Prestes TR, Rocha NP, Miranda AS, Teixeira AL, Simões-e-Silva AC. The anti-inflammatory potential of ACE2/angiotensin-(1-7)/mas receptor axis: evidence from basic and clinical research. *Curr Drug Targets.* (2017) 18:1301–1313. doi: 10.2174/1389450117666160727142401
21. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. *Sci China Life Sci.* (2020) 63:364–74. doi: 10.1007/s11427-020-1643-8

Conflict of interest

The author(s) declared that this work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that generative AI was not used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

22. Wu Z, Hu R, Zhang C, Ren W, Yu A, Zhou X. Elevation of plasma angiotensin II level is a potential pathogenesis for the critically ill COVID-19 patients. *Crit Care*. (2020) 24:1–3. doi: 10.1186/s13054-020-03015-0

23. Henry BM, De Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. *Clin Chem Lab Med.* (2020) 58:1021–8. doi: 10.1515/cclm-2020-0369

24. Reindl-Schwaighofer R, Hödlmoser S, Eskandary F, Poglitsch M, Bonderman D, Strassl R, et al. ACE2 elevation in severe COVID-19. *Am J Respir Crit Care Med.* (2021) 203:1191–6. doi: 10.1164/rccm.202101-0142LE

25. Brasil. *Instituto Brasileiro de Geografia e Estatística*. Brasília: IBGE (2020).

26. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. *JAMA - J Am Med Assoc.* (2020) 323:1239–42. doi: 10.1001/jama.2020.2648

27. Currey J, Ellsworth C, Shamima M, Wang C, Chen Z, Liu S, et al. BBA - Molecular Basis of Disease Upregulation of inflammatory genes and pathways links obesity to severe. *BBA - Mol Basis Dis.* (2024) 1870:167322. doi: 10.1016/j.bbadi.2024.167322

28. Gagliardi S, Hotchkiss T, Tibebé H, Hillmer G, Marquez D, Izumi C, et al. The renin - angiotensin system modulates SARS-CoV-2 entry via ACE2 receptor. *Viruses*. (2025) 2019:1–14. doi: 10.1101/2025.06.25.661409

29. Trump S, Lukassen S, Anker MS, Chua RL, Liebig J, Thürmann L, et al. Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. *Nat Biotechnol.* (2021) 39:705–16. doi: 10.1038/s41587-020-00796-1

30. Macciò A, Oppi S, Madeddu C. COVID-19 and cytokine storm syndrome: can what we know about interleukin-6 in ovarian cancer be applied? *J Ovarian Res.* (2021) 14:1–16. doi: 10.1186/s13048-021-00772-6

31. Dohet F, Loap S, Menzel A, Iddir M, Dadoun F, Bohn T, et al. Obesity considerations during the COVID-19 outbreak. *Int J Vitamin Nutr Res.* (2022) 92:67–79. doi: 10.1024/0300-9831/a000695

32. Subramanian A, Ling RR, Ridley EJ, Pilcher DV. The impact of body mass index on long-term survival after ICU admission due to COVID-19: A retrospective multicentre study. *Crit Care Resuscitation.* (2023) 25:182–92. doi: 10.1016/j.ccr.2023.10.004

33. Valerio CM, Saraiva JFK, Valente F, Van De Sande-lee S, Rocha VZ, Rached FH, et al. 2025 Brazilian evidence-based guideline on the management of obesity and prevention of cardiovascular disease and obesity-associated complications : a position statement by five medical societies. *Diabetol Metab Syndr.* (2025) 8:432. doi: 10.1186/s13098-025-01954-8

34. Brauer M, Roth GA, Aravkin AY, Zheng P, Abate KH, Abate YH, et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet.* (2024) 403:2162–203. doi: 10.1016/S0140-6736(24)00933-4

35. Bedford J, Enria D, Giesecke J, Heymann DL, Ihekweazu C, Kobinger G, et al. COVID-19: towards controlling of a pandemic. *Lancet (London England).* (2020) 395:1015–8. doi: 10.1016/S0140-6736(20)30673-5

36. Lamontagne F, Agoritas T, MacDonald H, Leo YS, Diaz J, Agarwal A, et al. A living WHO guideline on drugs for covid-19. *BMJ.* (2020) 370:m3379. doi: 10.1136/bmj.m3379

37. Silberberg E, Filep JánosG, Ariel A. Weathering the Storm : Harnessing the Resolution of Inflammation to Limit COVID-19 Pathogenesis. *Front Immunol.* (2022) 13:1–18. doi: 10.3389/fimmu.2022.863449

38. He Q, Hu Da, Zheng F, Chen W, Hu K, Liu J, et al. Investigating the nexus of NLRP3 inflammasomes and COVID-19 pathogenesis: unravelling molecular triggers and therapeutic strategies. *Viruses.* (2024) 16:213. doi: 10.3390/v16020213

39. Gurshaney S, Morales-alvarez A, Ezhakunnel K, Manalo A, Huynh T, Abe J, et al. Metabolic dysregulation impairs lymphocyte function during severe SARS-CoV-2 infection. *Commun Biol.* (2023) 6(1):374. doi: 10.1038/s42003-023-04730-4

40. IUZI L, BUcciarelli L, FerrUlli A, TerrUZZI I, MaSSariNi S. obesity and coVid-19: The ominous duet affecting the renin-angiotensin system. *Minerva Endocrinol.* (2021) 46:193–201. doi: 10.23736/S2724-6507.20.03402-1

41. Kalupahana NS, Moustaid-Moussa N. The adipose tissue renin-angiotensin system and metabolic disorders: A review of molecular mechanisms. *Crit Rev Biochem Mol Biol.* (2012) 47:379–90. doi: 10.3109/10409238.2012.694843

42. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. *JAMA - J Am Med Assoc.* (2020) 323:1061–9. doi: 10.1001/jama.2020.1585

43. Kutz A, Conen A, Gregoriano C, Haubitz S, Koch D, Domenig O, et al. Renin-angiotensin-aldosterone system peptide profiles in patients with COVID-19. *Eur J Endocrinol.* (2021) 184:542–52. doi: 10.1530/EJE-20-1445

44. Martins ALV, da Silva FA, Bolais-Ramos L, de Oliveira GC, Ribeiro RC, Pereira DAA, et al. Increased circulating levels of angiotensin-(1–7) in severely ill COVID-19 patients. *ERJ Open Res.* (2021) 7:00114–2021. doi: 10.1183/23120541.00114-2021

45. Khanna D, Khanna S, Khanna P, Kahar P, Patel BM. Obesity: A chronic low-grade inflammation and its markers. *Cureus.* (2022) 14:e22711. doi: 10.7759/cureus.22711

46. Baetge C, Earnest CP, Lockard B, Coletta AM, Galvan E, Rasmussen C, et al. Efficacy of a randomized trial examining commercial weight loss programs and exercise on metabolic syndrome in overweight and obese women. *Appl Physiol Nutr Metab.* (2017) 42:216–27. doi: 10.1139/apnm-2016-0456

47. Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis. *Nat Rev Microbiol.* (2022) 20:270–84. doi: 10.1038/s41579-022-00713-0

48. Pasquarelli-do-Nascimento G, Braz-de-Melo HA, Faria SS, Santos I de O, Kobinger GP, Magalhães KG. Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality in COVID-19 patients with obesity. *Front Endocrinol.* (2020) 11. doi: 10.3389/fendo.2020.00530

49. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature.* (2020) 579:270–3. doi: 10.1038/s41586-020-12012-7

50. Vilhena DC, Passos-Silva DG, Santos RAS. Alamandine: a new member of the angiotensin family. *Curr Opin Nephrol Hypertension.* (2014) 23:130–4. doi: 10.1097/01.mnh.0000441052.44406.92

51. Magalhães GS, Rodrigues-MaChado M da G, Motta-Santos D, Campagnole-Santos MJ, Santos RAS. Activation of Ang-(1-7)/mas receptor is a possible strategy to treat coronavirus (SARS-CoV-2) infection. *Front Physiol.* (2020) 11:730. doi: 10.3389/fphys.2020.00730

52. Lu H, Boustany-Kari CM, Daugherty A, Cassis LA. Angiotensin II increases adipose angiotensinogen expression. *Am J Physiol - Endocrinol Metab.* (2007) 292:1280–7. doi: 10.1152/ajpendo.00277.2006

53. Gul R, Kim UH, Alfadda AA. Renin-angiotensin system at the interface of COVID-19 infection. *Eur J Pharmacol.* (2021) 890:173656. doi: 10.1016/j.ejphar.2020.173656

54. Naomi R, Teoh SH, Embong H, Balan SS, Othman F, Bahari H, et al. The role of oxidative stress and inflammation in obesity and its impact on cognitive impairments—A narrative review. *Antioxidants.* (2023) 12:1–20. doi: 10.3390/antiox12051071

55. Brandão SCS, Godoi ETAM, Ramos J de OX, de Melo LMMP, Sarinho ESC. Severe COVID-19: understanding the role of immunity, endothelium, and coagulation in clinical practice. *Jornal Vasc Brasileiro.* (2020) 19:1–11. doi: 10.1590/1677-5449.200131

56. Choudhury A, Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. *J Med Virol.* (2020) 92:2105–13. doi: 10.1002/jmv.25987

57. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. *J Clin Invest.* (2020) 130:2202–5. doi: 10.1172/JCI137647

58. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet (London England).* (2020) 395:1033. doi: 10.1016/S0140-6736(20)30628-0

59. Parker A, Petersen-Ross K, Maponga T, Parkar S, Ahmed N, Snyders CI, et al. Pre-existing adipose tissue signaling profile related to obesity determines disease outcome of COVID-19: addressing obesity should be a priority for future pandemic preparedness. *Front Endocrinol.* (2025) 16:1–12. doi: 10.3389/fendo.2025.1506065

60. Perrotta F, Scialò F, Mallardo M, Signoriello G, D'Agnano V, Bianco A, et al. Adiponectin, leptin, and resistin are dysregulated in patients infected by SARS-CoV-2. *Int J Mol Sci.* (2023) 24:1131. doi: 10.3390/ijms24021131

61. Martínez-colón GJ, Transl S, Martínez-colón GJ, Ratnasi K, Chen H, Jiang S, et al. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. *Sci Transl Med.* (2022) 9151:1–26. doi: 10.1126/scitranslmed.abm9151

62. Favre GA, Esnault VLM, Obberghen EV. Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. *Am J Physiol Endocrinol Metab.* (2015) 308 (6):E435–49. doi: 10.1152/ajpendo.00391.2014

63. Rysz S, Al-saadi J, Sjöström A, Farm M, Jalde FC, Plattén M, et al. COVID-19 pathophysiology may be driven by an imbalance in the renin-angiotensin-aldosterone system. *Nat Commun.* (2021) 12:1–12. doi: 10.1038/s41467-021-22713-z

64. El-Arif G, Khazaal S, Farhat A, Harb J, Annweiler Cédric, Wu Y, et al. Angiotensin II type 1 receptor (AT1R): the gate towards COVID-19-associated diseases. (2022). doi: 10.3390/molecules27072048

65. The Lancet Diabetes & Endocrinology. Redefining obesity: advancing care for better lives. *Lancet Diabetes Endocrinol.* (2025) 13:75. doi: 10.1016/S2213-8587(25)00004-X

66. Shukla AK, Banerjee M. Angiotensin-converting-enzyme 2 and renin-angiotensin system inhibitors in COVID-19: an update. *High Blood Pressure Cardiovasc Prev.* (2021) 28:129–39. doi: 10.1007/s40292-021-00439-9

67. Ceasovschii A, Sorodoc V, Shor A, Haliga RE, Roth L, Lointe C, et al. Distinct Features of Vascular Diseases in COVID-19. *J Inflamm Res.* (2023) 6:2783–2800. doi: 10.2147/JIR.S41769

68. Sales-Peres SH de C, de Azevedo-Silva LJ, Bonato RCS, Sales-Peres M de C, Pinto AC da S, Santiago Junior JF. Coronavirus (SARS-CoV-2) and the risk of obesity for critically ill and ICU admitted: Meta-analysis of the epidemiological evidence. *Obes Res Clin Practice.* (2020) 14:389–97. doi: 10.1016/j.orcp.2020.07.007

69. Perpiñan C, Bertran L, Terra X, Aguilar C, Binetti J, Lopez-Dupla M, et al. Resistin and IL-15 as predictors of invasive mechanical ventilation in COVID-19 pneumonia irrespective of the presence of obesity and metabolic syndrome. *J Personalized Med.* (2022) 12:391. doi: 10.3390/jpm12030391

70. Sadria M, Layton AT. Use of angiotensin-Converting enzyme inhibitors and angiotensin II receptor blockers during the COVID-19 pandemic: A modeling analysis. *PLoS Comput Biol.* (2020) 16:1–16. doi: 10.1371/journal.pcbi.1008235

71. Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. *Obesity.* (2020) 28:1195–9. doi: 10.1002/oby.22831

72. Drucker DJ. Diabetes, obesity, metabolism, and SARS-CoV-2 infection: the end of the beginning. *Cell Metab.* (2021) 33:479–98. doi: 10.1016/j.cmet.2021.01.016

73. Martin JH, Head RE. Obesity and COVID-19: Renin-angiotensin as a mediator of morbidity and mortality. *Br J Nutr.* (2022) 127:1439–40. doi: 10.1017/S0007114521001847

74. Toori KU, Qureshi MA, Chaudhry A, Safdar MF. Neutrophil to lymphocyte ratio (Nlr) in covid-19: A cheap prognostic marker in a resource constraint setting. *Pakistan J Med Sci.* (2021) 37:1435–9. doi: 10.12669/pjms.37.5.4194

75. Liu Z, Xiao X, Wei X, Li J, Yang J, Tan H, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. *J Med Virol.* (2020) 92:595–601. doi: 10.1002/jmv.25726

76. Koçak Tufan Z, Kayaaslan B, Mer M. COVID-19 and sepsis. *Turkish J Med Sci.* (2021) 51:3301–11. doi: 10.3906/sag-2108-239

77. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. *Semin Immunopathol.* (2017) 39:529–39. doi: 10.1007/s00281-017-0629-x

78. Wang YH, Lin AS, Chao TY, Lu SN, Liu JW, Chen SS, et al. A cluster of patients with severe acute respiratory syndrome in a chest ward in southern Taiwan. *Intensive Care Med.* (2004) 30:1228–31. doi: 10.1007/s00134-004-2311-8

79. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. *JAMA Internal Med.* (2020) 180:934–43. doi: 10.1001/jamainternmed.2020.0994

80. Van Lier D, Kox M, Santos K, van der Hoeven H, Pillay J, Pickkers P. Increased blood angiotensin converting enzyme 2 activity in critically ill COVID-19 patients. *ERJ Open Res.* (2021) 7:00848. doi: 10.1183/23120541.00848-2020

81. Méndez-García LA, Escobedo G, Aguayo-guerrero JA, Carrillo-ruiz JD. Role of the renin-angiotensin system in the development of neurological manifestations. *Front Cell Neurosci.* (2022) 16:1–17. doi: 10.3389/fncel.2022.977039