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Background:Obesity is a major risk factor for severe COVID-19, partly explained

by chronic systemic low-grade inflammation and renin-angiotensin-aldosterone

system (RAAS) dysregulation.

Objectives: To investigate the relationship between obesity and COVID-19

severity by measuring plasma angiotensin II (Ang II) and pro and anti-

inflammatory cytokines across BMI categories.

Methods: In a cross-sectional cohort of 142 adults (Lean and Obese), including

mild and severe COVID-19 cases and matched uninfected controls. Plasma Ang

II, IL-1b, IL-6, IL-10, and TNF were quantified by ELISA. Associations with BMI and

clinical severity were assessed using ANOVA and correlation analyses.

Results: Obese patients showed elevated Ang II, IL-1b, IL-6, and TNF, alongside

reduced IL-10, compared to lean individuals and controls. Ang II positively

correlated with BMI. Severe cases showed elevated neutrophil-to-lymphocyte

ratios and greater need for ventilatory support requirements. Notably, mortality

occurred exclusively among obese patients.

Conclusion: Obesity exacerbates COVID-19 severity through RAAS imbalance

and, amplified inflammatory responses. Ang II and pro-inflammatory cytokines

may serve as early predictive biomarkers of disease progression in obese

individuals, highlighting the metabolic-immune interface as a critical

determinant of COVID-19 outcomes.
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Highlights
Fron
• Severe COVID-19 and death occur exclusively in obese patients.

• Obesity triggers RAAS imbalance with elevated Angiotensin

II and hyperinflammation.

• Pro-inflammatory cytokines (IL-1b, IL-6, TNF) surge while
IL-10 drops in obesity.

• Angiotensin II and inflammatory markers may predict

COVID-19 severity early.
1 Introduction

The renin–angiotensin–aldosterone system (RAAS) is a central

hormonal network regulating blood pressure and fluid homeostasis

(1–3). The classical pathway of RAAS begins when the kidneys

release the renin in response to low blood pressure or reduced

sodium levels (4–6). Renin cleaves angiotensinogen into

angiotensin I (Ang I), which is subsequently converted into

angiotensin II (Ang II), primarily in the lungs by angiotensin-

converting enzyme (ACE). Ang II binds to the angiotensin II type 1

receptor (AT1R), leading to vasoconstriction, stimulation of

aldosterone release from the adrenal glands, promotion of renal

sodium reabsorption, and increased fluid retention (1, 2, 4, 5, 7).

These effects collectively raise blood pressure and circulating

volume. While essential for physiological regulation, chronic

overactivation of the classical RAAS pathway is strongly

associated with cardiovascular complications (2).

Beyond this classical axis, the RAAS also comprises a protective

counter-regulatory arm, in which Ang II or Ang I are metabolized

by angiotensin-converting enzyme 2 (ACE2) to form angiotensin

1–7 (Ang 1–7). This heptapeptide exerts vasodilatory, anti-

inflammatory, anti-fibrotic, and cardioprotective effects through

activation of the Mas receptor (MasR) (8, 9). Ang 1–7 opposes

many of the actions of Ang II/AT1R by promoting nitric oxide

release, reducing oxidative stress, and inhibiting cell proliferation

and cytokine production (8–10).

The balance between the two main arms of the renin–

angiotensin–aldosterone system (RAAS)—the classical pathway

(ACE/Ang II/AT1R) and the alternative pathway (ACE2/Ang 1–

7/MasR)—is essential for maintaining cardiovascular and metabolic

homeostasis (11–13). During SARS-CoV-2 infection, the viral spike

(S) protein binds to the ACE2 receptor to enter host cells,

particularly in the lungs, heart, kidneys, and gastrointestinal tract

(14, 15). This interaction of the SARS-CoV-2 virus leads. ACE2

internalization and downregulation at the cell surface, resulting in

reduced enzymatic activity and consequent accumulation of Ang II.

Increased Ang II availability enhances AT1R-mediated responses,

thereby promoting inflammation, oxidative stress, vasoconstriction,

and thrombosis (14, 15).

Such dysregulation has been implicated in the pathogenesis and

severity of COVID-19, especially among individuals with

comorbidities such as hypertension, diabetes, or obesity (2, 5, 16).

This pathological imbalance is further amplified by chronic non-

communicable diseases (NCDs), with obesity exerting a particularly
tiers in Immunology 02
prominent effect (17). Obesity is recognized as a state of low-grade

chronic inflammation – often referred to globally as “globesity” (14,

15) – and is strongly associated to more severe COVID-19

outcomes (18, 19). In individuals with obesity, prolonged viral

persistence and an exacerbated inflammatory response,

characterized by elevated levels of pro-inflammatory interleukins

(e.g., IL-1b and IL-6), anti-inflammatory cytokines such as IL-10,

tumor necrosis factor (TNF), and altered adipokine secretion,

contribute to additional disruption of RAAS signaling, amplifying

Ang II-mediated effects (5, 20).

Several studies have examined RAAS components in the plasma

of COVID-19 patients, with a primary focus on Ang II levels in

critically ill individuals. However, the findings remain inconsistent

(5, 7, 10, 21–23), and no study has systematically compared RAAS

activity across lean and obese populations. In this context, our

results demonstrate that Ang II levels are elevated in individuals

with obesity in direct association with disease severity.

Furthermore, our data challenge a previously proposed hypothesis

suggesting that severe illness and systemic dysregulation would

hinder the detection of RAAS metabolites. In contrast, we were able

to reliably quantify Ang II at picogram levels—even in non-infected

individuals—at concentrations comparable to those reported by

Reindl-Schwaighofer et al. (24).
2 Methods

2.1 Study design

This was a cross-sectional cohort study involving adult patients

of both sexes, aged 18 years or older, with a confirmed molecular

diagnosis of SARS-CoV-2 infection by real-time RT-PCR. The

study was approved by the Ethics Committees of the Federal

University of the Jequitinhonha and Mucuri Valleys (UFVJM)

and the Ribeirão Preto School of Nursing, University of São

Pau lo (EERP/USP) , under the fo l lowing protoco l s :

55519822.4.0000.5108, 34189420.2.0000.5108, 4.557.181 (for

individuals with Influenza-like illness, i.e., mild symptoms),

4.202.959 (for patients with severe acute respiratory syndrome—

SARS, moderate/severe conditions), and 4.533.696. Figure 1 of this

study was created using Biorender: Scientific Image and

Illustration Software.
2.2 Setting

The study was conducted with partnership between UFVJM,

EERP/USP, and the School Laboratory of Clinical Analysis (LEAC),

encompassing 31 municipalities in the Jequitinhonha Valley

macroregion. Clinical data were obtained from electronic medical

records of the Santa Casa de Caridade de Diamantina and from

primary care units (ViVver). Biological samples (nasopharyngeal

swabs and peripheral blood) were collected between 2020 and 2024.

A non-probabilistic, consecutive sampling strategy was employed to

recruit patients with confirmed SARS-CoV-2 infection, either
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1729494
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rodrigues et al. 10.3389/fimmu.2025.1729494
hospitalized or in home isolation, and a control group without

infection. The sample size was determined based on the local

population of Diamantina, Minas Gerais (47,825 inhabitants) (25).
2.3 Participants

Participants were categorized into two BMI-based groups—lean

(LN) and obese (OB)—and further stratified by COVID-19 severity

(mild vs. severe). The control group included BMI-matched

individuals who tested negative for SARS-CoV-2.

The inclusion criteria comprised adults aged 18 years or older,

classified by BMI, with SARS-CoV-2 infection time between 0 and

14 days, confirmed by RT-PCR testing. Negative controls, also

confirmed by the same molecular test, were included. The exclusion

criteria were: individuals who had recently received the vaccination

(<30 days), patients with chronic kidney disease due to altered renin

production, resulting in increased levels of angiotensin II and

aldosterone, and patients with incomplete clinical data.

COVID-19 Diagnosis SARS-CoV-2 RNA was detected using

qualitative real-time RT-PCR. Nucleic acid extraction was

performed using Maxwell® RSC 16 (Promega) and amplification

using Applied Biosystems StepOne or StepOnePlus systems

(ThermoFisher Scientific, USA). Target genes included N1 and

N2 (2019-nCoV primer/probe sets). Samples with cycle threshold

(Ct) value ≤40 were considered positive. Quantification of

Cytokines and Adipokines
Frontiers in Immunology 03
Plasma levels of IL-1b, IL-6, IL-10 and TNF were measured

using commercial ELISA kits (DuoSet®, R&D Systems). All assays

were conducted according to the manufacturer’s instructions, using

human plasma samples stored at (2–8°C). Samples were analyzed

in duplicate.
2.4 Angiotensin II measurement

Plasma Ang II concentrations were quantified using a specific

ELISA kit (EIA Kit, SIGMA-ALDRICH, Merck; Catalog No.

RAB0010). Blood samples were collected in pre-chilled tubes

containing a protease inhibitor cocktail (Thermo Fisher 100X) to

prevent peptide degradation. Plasma was processed within 3 hours

and stored at –80°C. until analysis.
2.5 Statistical analysis

Data were analyzed using GraphPad Prism 8.0 and SPSS version

22.0. Quantitative variables were expressed as mean ± standard

deviation or median (interquartile range), depending on

distribution, which was assessed using the Kolmogorov-Smirnov

test. Categorical variables were expressed as absolute and relative

frequencies. Associations between BMI and variables such as

symptoms, clinical aspects, comorbidities, and outcome were

assessed using the chi-square test. Comparisons between groups
FIGURE 1

Representative diagram of how obesity and SARS-CoV-2 infection interact. Imbalance of the Renin–Angiotensin–Aldosterone System (RAAS),
increased angiotensin II, release of pro-inflammatory cytokines, and reduced IL-10, resulting in worse clinical prognosis and mortality exclusively in
obese patients. Image created with BioRender, 2025.
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were performed using one-way or two-way ANOVA followed by

Tukey’s post-hoc test. Pearson’s correlation coefficients were

calculated to assess the association between BMI and Ang II

levels. Statistical significance was set at p ≤ 0.05.
3 Results

3.1 Demographic and clinical
characterization by body composition
using in individuals with COVID-19

This study evaluated 150 participants recruited from

domiciliary settings, Emergency Care Units (UPAs), and Intensive

Care Units (ICUs). Of these, 142 individuals were included in the

final analysis; eight were excluded due to incomplete questionnaire

responses or missing of clinical information in medical records.

Table 1, presents the epidemiological, clinical, and laboratory

characteristics stratified by body composition according to BMI.

The sample was sex-matched across control and COVID-19-

positive groups, comprising 87 women (61.3%) and 55 men
Frontiers in Immunology 04
(38.7%). Among individuals with confirmed SARS-CoV-2

infection, 31 (21.8%) were classified as lean and 69 (48.6%) as

obese—the latter representing the largest subgroup.

Laboratory parameters supported the clinical observations.

Individuals with obesity of both sexes exhibited reduced

hemoglobin concentrations, a factor associated with dyspnea and

tachycardia. They also showed decreased total leukocyte and

lymphocyte counts, accompanied by elevated neutrophil-to-

lymphocyte (NLR) ratio— an established biomarker of poor and

increased mortality in COVID-19. These findings reinforce the

hypothesis that obesity constitutes an independent risk factor for

increased susceptibility to SARS-CoV-2 infection and is associated

with a higher likelihood of severe clinical manifestations.

To explore the relationship between body composition and the

prevalence of comorbidities, Table 2 summarizes the most frequent

conditions observed in the study cohort. Only individuals with mild

or severe COVID-19 were included in this comparison due to the

limited number of moderate cases. Systemic arterial hypertension

emerged as the most prevalent comorbidity, followed by chronic

obstructive pulmonary disease (COPD), dyslipidemia, and

cardiovascular disease.
TABLE 1 Demographic and clinical characteristics by body mass index (BMI).

Variables LN- (n = 22)

Control

LN + (n = 31)

COVID-19

Total (n = 142) P valueOB- (n = 20) OB+ (n = 69)

Sex (n%)

Woman 16 (18,3) 11(12,7) 18 (20,6) 42 (48,4) 87 (61,3) 0,0082

Men 6 (10,9) 9 (16,4) 13 (23,6) 27 (49,1) 55 (38,7)

Age (mean ± SD) 36,7 ± 9,9 40,8 ± 13,8 44,6 ± 20,8 44,5 ± 16,5 41,2 ± 15,2 0,0017*

Clinical aspects (mean ± SD)

Oxygen Saturation (SpO2) (%) 98,9 ± 0,8 98,3 ± 1,1 96,1 ± 2,5* 93,8 ± 3,5*/# – <0,0001***

Systolic Blood Pressure (SBP) (mmHg) 116,4 ± 13,8 120,8 ± 14 122,7 ± 14,7 126,2 ± 17,3 – 0,0244

Diastolic Blood Pressure (DBP)
(mmHg)

71,7 ± 10,2 77,3 ± 9,7 75,7 ± 9,5 77,4 ± 10,7 – 0,0778

Heart Rate (BPM) 71,7 ± 12,3 77,4 ± 9,8 87,4 ± 12,5* 87,6 ± 12,7* – <0,0003*

Laboratory aspects (mean ± SD)

Hematocrit (%) 41,4 ± 4,9 42,9 ± 4,4 43,1 ± 7,5 41,9 ± 6 – 0,7768

Hemoglobin (g/dl) 14,9 ± 1,6 15,0 ± 1,7 14,7 ± 2,4 14,2 ± 2,3 – 0,1483

Leukocytes (K/μL) 5,9 ± 1,3 5,8 ± 1,8 6,1 ± 2,2 7,5 ± 3 – 0,0179*

Neutrophils (K/μL) 3,3 ± 1,4 3,4 ± 0,8 4,6 ± 3,3 4,8 ± 2,3 – 0,1569

Lymphocytes (K/μL) 2,2 ± 0,6 2,5 ± 0,5 2,6 ± 1,1 3,2 ± 2,7 – 0,2071

N/L Ratio (K/μL) 0,8 ± 0,4 0,8 ± 0,2 0,4 ± 0,4 1,9 ± 1,5*/# – <0,0001***
Source: Author (2025).
Categorical variables are expressed as frequencies (absolute - n, relative %). These are followed by cross-tabulation analysis using the Chi-square test, comparing BMI to comparing BMI to clinical
and laboratory parameters. Continuous variables were calculated using the One-Way ANOVA test with Tukey’s post hoc test.
*Indicates significant differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes significant intragroup
difference (positives only) to assess the effect of BMI, LN+ with OB+. The p-value represents an intergroup comparison of p < 0.05. Results below this value are considered highly significant and
are expressed by the symbols * corresponding to p < 0.0003 and < 0.0005 and/or *** p < 0.0001. LN-, lean negative (control); OB-, obese negative (control). LN+, lean positive COVID-19; OB+,
obese positive COVID-19.
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3.2 Factors associated with severity in
COVID-19 patients

Focusing on disease severity, Table 3 depicts a cyclical clinical

profile in which obesity may contribute to the development of

comorbidities, while SARS-CoV-2 infection in obese individuals

further alters physiological parameters, aggravating their health

status. Systolic and diastolic blood pressure were slightly elevated

in hospitalized patients with severe disease, including those without

COVID-19, indicating that obesity alone was sufficient to alter these

parameters. Heart rate showed an upward trend across all infected

groups. Interestingly, ventilatory variables showed that oxygen
Frontiers in Immunology 05
saturation in critically ill patients dropped significantly, consistent

with the findings reported above. Patients in this group also

required non-invasive ventilation and, in many cases, invasive

mechanical ventilation through intubation. These observations

highlight the impaired lung expansion and compromised

ventilatory capacity in critically ill individuals—particularly

patients with obesity, who exhibited poorer outcomes.

As shown in Table 3, patients with severe COVID-19 (requiring

hospitalization) presented laboratory abnormalities such as reduced

hematocrit and hemoglobin, thrombocytopenia, leukocytosis,

lymphocytosis, and neutrophilia. The increase in the neutrophil-

to-lymphocyte ratio (NLR), an inflammatory biomarker, with
TABLE 2 Demographic and clinical characteristics, comorbidities, and outcomes according to disease severity and BMI.

Variables LN (n=20)

Influenza-like
Illness (ILI)

LN (n=12)

Severe acute
respiratory

syndrome (SARS)
Total

(n=100) P valueOB (n=43) OB (n=25)

Sex (n %)

Female
Male

15(24,6)
5 (12,8)

26 (42,6)
17 (43,6)

4 (6,6)
8(20,5)

16 (26,2)
9 (23,1)

61
39

<0,0001***

Age (mean ± SD) 34,5 ± 11,2 39,3 ± 10,8 68,6 ± 14,4 62,2 ± 21,3 51,2 ± 14,4 <0,0001***

Signs and symptoms (n %)

Cough 6 (10,5) 25(43,8) 9 (15,8) 17 (29,8) 57 0,344

Runny nose 13 (31) 20 (47,6) 2 (4,8) 7 (66,6) 42 0,593

Fever 5 (14,3) 4 (31,4) 7 (20) 12(34,2) 35 0,452

Headache 5 (12,8) 15 (66,6) 3 (7,7) 5 (12,8) 39 0,548

Anosmia 14 (27,5) 25 (49,0) 3 (5,8) 9 (17,6) 51 0,350

Dysgeusia 8 (21,1) 23 (60,5) 2 (5,2) 5 (13,2) 38 0,571

Dyspnea 3 (7,7) 11 (28,2) 9 (23,1) 6 (41,0) 39 0,449

Desaturation 16 (13,0) 1 (2,2) 10(21,8) 19 (41,3) 46 0,667

Comorbitidies (n %)

Hypertension 3 (12,0) 6 (24,0) 7 (28,0) 9 (36,0) 25 0,587

Dyslipidemia 2 (13,3) 8 (53,3) 0 (0) 5 (33,4) 15 0,005*

Diabetes Mellitus 0 (0) 3 (50,0) 2 (33,4) 1 (16,6) 6 0,196

Respiratory disease 1 (9,1) 2 (18,2) 2 (18,2) 6 (54,5) 11 0,449

Cancer 0 (0) 0 (0) 1 (33,3 2 (66,6) 3 0,504

Mental Illness 1 (11,0) 4 (44,5) 0 (0) 4 (44,5) 9 0,169

Clinical outcome (n%)

Recovery 20 (22,2) 43 (47,8) 9 (10,0) 18 (20,0) 90 0,256

Death 0 (0) 0 (0) 2 (20,0) 8 (80,0) 10
Source: Author (2025).
Categorical variables are expressed as frequencies (absolute - n, relative %). These are followed by cross-tabulation analysis using the Chi-square test, comparing BMI to signs and symptoms,
comorbidities, and clinical outcome.
*Indicates significant differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes significant intragroup
difference (positives only) to assess the effect of BMI, LN+ with OB+. The p-value represents an intergroup comparison of p < 0.05. Results below this value are considered highly significant and
are expressed by the symbols * corresponding to p < 0.0003 and < 0.0005 and/or *** p < 0.0001. LN-, lean negative (control); OB-, obese negative (control). LN+, lean positive COVID-19; OB+,
obese positive COVID-19.
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values above 2.21, is a predictor of ICU hospitalization and is

associated with an 8% higher risk of death compared to those with

mild disease (managed at home), being positively correlated with

worse prognosis. Biochemical parameters such as C-reactive

protein, D-dimer and arterial blood gas values, although altered,

were assessed only in critically ill patients, in accordance with SUS
Frontiers in Immunology 06
hospital care priority protocols, and therefore it was not possible to

compare. Regarding clinical outcome all patients with mild disease

achieved complete recovery, whereas among severe cases, 7 patients

(16.7%) died, all of whom belonged to the obese BMI group. This

finding demonstrates a positive association between obesity and

worse outcomes in COVID-19.
TABLE 3 Baseline laboratory and blood gas variables according to COVID-19 severity.

Variables ILI (DP)-n (%) (n = 59) SARS (DP)-n (%) (n = 48) P value

BMI (kg/m2) 25,9 ± 5,3 31,7 ± 5,8 <0,0001***

Systolic Blood Pressura (mmHg) 126,38 ± 19,71 128, 33 ± 9,83 <0,0001***

Diastolic Blood Pressura (mmHg) 72,85 ± 12,51 78, 33 ± 9, 83 <0,0001***

Heart Rate (bpm) – 84,93 ± 14,99 –

Oxygen Saturation (%) 94,84 ± 1,55 90,90 ± 6,0 0,1838

Ventilatory parameters

Mechanical Ventilation n (%)
Round-glass Opacity on Imaging (Chest CT)

2 (3,4)
7 (11,9)

12 (25)
33 (68,8)

Labatory tests (mean ± SD)

Hematocrit (%) 31,59 ± 21,80 22,87 ± 20,65 0,0417

Hemoglobin (g/dL) 10,64 ± 7,75 7,64 ± 6,88 0,0475

Leukocytes (10³/μl) 4,58 ± 3,77 5,41 ± 4,09 0,2643

Neutrophils(10³/μl) 3,74 ± 2,75 4,46 ± 3,51 0,2354

Lymphocytes (10³/μl) 2,71 ± 2,38 7,88 ± 8,36 <0,0001***

Neutrophil/Lymphocyte Ratio (NLR) 0,29 ± 1,18 0,32 ± 0,58 0,8481

Platelets (10³/μl) 129 ± 125 85,96 ± 145,5 0,0850

CRP (mg/L) 0 81,15 ± 31,86 –

D-Dimer (ng/mL) 0 44,22 ± 166,4 –

Arterial blood gas (mean ± SD)

Blood pH – 7,4 ± 2,8 –

Oxygen Pressure (pO2) – 75,5 ± 28,4 –

Carbon Dioxide Pressure (pCO2) – 43,8 ± 14,4 –

Bicarbonate (HCO3) – 26,3 ± 6,0 –

Sodium (Na - mEq/L) – 140 ± 6,9 –

Potassium (K - mEq/L) – 1,2 ± 1,0 –

Creatinine (mg/dL) – 1,2 ± 1,0 –

Urea (mg/dL) – 45,4 ± 24,1 –

Lactate Dehydrogenase (LDH) (U/L) – 573,1 ± 309,8 –

Clinical outcome (n%)

Recovery
Death

65 (100)
0

35 (73)
10 (20,8) <0,0001***
Source: Author (2025).
Categorical variables are expressed as frequencies (absolute - n, relative %). Cross-tabulation analysis is followed by the Chi-square test, comparing BMI to clinical and laboratory parameters in
ILI and SARS patients.
*Indicates significant differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes significant intragroup
difference (positives only) to assess the effect of BMI, LN+ with OB+. The p-value represents an intergroup comparison of p < 0.05. Results below this value are considered highly significant and
are expressed by the symbols * corresponding to p < 0.0003 and < 0.0005 and/or *** p < 0.0001. LN-, lean negative (control); OB-, obese negative (control). LN+, lean positive COVID-19; OB+,
obese positive COVID-19.
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3.3 Overactive cytokine immune response

Our findings indicate immunological impairment in this

population, characterized by cytokine hyperactivity, hypercytokinemia,

observed both in obese patients with mild clinical symptoms and, more

prominently, in those with severe obesity. As shown in Figures 2–5,

levels of IL-1b, IL-6, TNF and IL-10 were significantly higher levels in

obese individuals, compared to lean subjects, with even greater

elevations in patients worse clinical outcomes.
3.4 A positive correlation between plasma
Ang II levels and obesity is associated with
greater clinical severity in individuals
infected with COVID-19

Plasma Ang II levels (pg/mL) were measured in all COVID-19

patients and control subjects. The analysis included a clinical

subdivision, in which lean and non-severe obese patients were

compared with their controls, and patients with severe conditions

with their respective/matched controls. Interestingly and consistent

with the findings of Liu et al. (21) andWu et al. (26) plasma levels of

Ang II in obese patients with COVID-19 were significantly higher

than those in non-severe negative and reaching even higher values

in individuals with severe disease (Figure 6).
Frontiers in Immunology 07
To determine whether the elevation of angiotensin II could be

associated with obesity, we performed a comparison between mild

and severe obese COVID-19–positive patients, and Pearson’s

correlation between Ang II and BMI. As expected, there was a

positive correlation between plasma angiotensin II levels and higher

BMI, indicating that obesity may alter the RAAS axis, leading to

hyperinflammation and greater disease severity.
4 Discussion

Our study demonstrates that obesity substantially exacerbates

COVID-19 severity by disrupting the RAAS and amplifying

inflammatory responses (27, 28). Obese individuals infected with

SARS-CoV-2 exhibited elevated plasma levels of Ang II, IL-1b, IL-6,
and TNF, alongside reduced IL-10 concentrations, indicating a

hyperinflammatory and immunologically dysregulated state (17,

29, 30). Moreover, the positive association between Ang II levels

BMI supports the hypothesis that excess adiposity enhances RAAS

activation and contributes to disease progression (11, 31, 32).

Obesity, also known as Adiposity-Based Chronic Disease (ABCD),

is increasingly recognized as a chronic immunometabolic disease

characterized by persistent endocrine, metabolic, and inflammatory

disorders (4, 33). During the COVID-19 pandemic, obesity emerged as

one of the strongest predictors of severity, with individuals presenting a
FIGURE 2

Interleukin 1b concentration. (A) IL-1b stratified by BMI, between controls and mild cases with flu-like illness; (B) IL-1b stratified by BMI, between
controls and severe cases with severe acute respiratory syndrome; (C) IL-1b comparison between flu-like illness and severe acute respiratory
syndrome. Source: Author (2025). (A–C) were calculated using the Two-Way ANOVA test with Tukey’s post-hoc test. * Indicates significant
differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes
significant intragroup difference (positives only) to assess the effect of BMI, LN+ with OB+ p < 0.05. LN-, negative lean (control); OB-, negative
obese (control). LN+, lean positive COVID-19; OB+, obese positive COVID-19. SG, Flu-Like Syndrome (mild/moderate manifestations); SARS, Severe
Acute Respiratory Syndrome (severe manifestations).
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BMI ≥30 kg/m² (4, 11, 34) demonstrating a markedly greater need for

intensive care and mechanical ventilation (19, 35, 36). Thus, obesity

should be considered not only a comorbidity but also a biological

condition that amplifies the host’s vulnerability to viral pathogens.

The coexistence of chronic systemic inflammation and SARS-

CoV-2 infection establishes a milieu that predisposes individuals to

immune dysregulation and RAAS perturbation (4). Adipose tissue

expresses angiotensinogen and other RAAS components, and

excess adiposity enhances Ang II production through adipocyte

hypertrophy, increased free fatty acids, and high-fat dietary patterns

(37–39). Moreover, the upregulation of ADAM17, frequently

observed in obesity, promotes ACE2 shedding and TNF release,

further aggravating inflammation (40, 41). Collectively, these

alterations precondition individuals with obesity to stronger

RAAS activation, oxidative stress, and endothelial dysfunction

even prior to viral exposure (5, 7, 10, 24, 26, 42–44).

Upon SARS-CoV-2 infection, these vulnerabilities become

more pronounced. Viral engagement of ACE2 reduces its

availability on the cell surface, shifting RAAS signaling (45, 46)

toward the classical ACE/Ang II/AT1R axis (8, 47–49) and

weakening the counterregulatory Ang-(1–7)/MasR and

alamandine/MrgD pathways (50, 51). As a result, Ang II
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accumulates and drives vasoconstriction, mitochondrial

dysfunction, NF-kB activation, and widespread endothelial injury

(7, 11, 52). Concomitantly, the reduction in ACE2-derived peptides

diminishes anti-inflammatory control, facilitating uncontrolled

cytokine production (28, 31, 53). TLR-mediated recognition of

viral components further fuels innate immune activation (38, 54),

triggering synthesis of IL-1b, IL-6, TNF, and IFN-g (55, 56), and

establishing a feed-forward inflammatory loop strongly implicated

in severe COVID-19 (30, 57, 58).

Within this immunometabolic landscape, the synergistic

interplay between obesity and SARS-CoV-2 becomes evident. In

our cohort, individuals with obesity showed elevated plasma Ang II,

heightened concentrations of IL-1b, IL-6, and TNF, and reduced IL-
10, supporting the presence of a dysregulated inflammatory state

exacerbated by viral infection (48, 59, 60). The positive association

between Ang II and BMI reinforces the mechanistic link between

adiposity and RAAS hyperactivation (5, 61, 62). Furthermore,

although women predominated in our sample—reflecting global

patterns of higher obesity prevalence—no significant sex differences

in Ang II levels were observed. This may be explained by the near-

menopausal age of many participants, a period in which protective

effects of estradiol and progesterone on ACE2 and AT2R signaling
FIGURE 3

Interleukin-6 concentration. (A) IL-6 stratified by BMI, between controls and mild cases with flu-like illness; (B) IL-6 stratified by BMI, between
controls and severe cases with severe acute respiratory syndrome; (C) IL-6 comparison between flu-like illness and severe acute respiratory
syndrome. Source: Author (2025). (A–C) were calculated using the Two-Way ANOVA test with Tukey’s post-hoc test. * Indicates significant
differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes
significant intragroup difference (positives only) to assess the effect of BMI, LN+ with OB+ p < 0.05. LN-, negative lean (control); OB-, negative
obese (control). LN+, lean positive COVID-19; OB+, obese positive COVID-19. SG, Flu-Like Syndrome (mild/moderate manifestations); SARS, Severe
Acute Respiratory Syndrome (severe manifestations).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1729494
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rodrigues et al. 10.3389/fimmu.2025.1729494
begin to diminish (63, 64). Thus, hormonal status, age, and

adiposity appear to collectively shape RAAS responsiveness

during SARS-CoV-2 infection (24, 43).

These immunometabolic interactions are further compounded by

cardiometabolic comorbidities commonly associated with obesity (65).

Hypertension, metabolic syndrome, and dyslipidemia converge

mechanistically on oxidative stress, endothelial dysfunction, and

RAAS activation (7, 66). Hypertriglyceridemia and elevated LDL

promote lipid deposition and vascular remodeling, accelerating

atherogenesis and contributing to endothelial vulnerability during

viral infection (65, 67). In addition, lipid raft enrichment of ACE2

facilitates SARS-CoV-2 entry, suggesting that dyslipidemia may not

only represent a comorbidity but also potentiate viral infectivity (2, 67–

69). Consequently, the constellation of cardiometabolic alterations in

individuals with obesity strengthens the biological rationale linking

adiposity to more severe COVID-19 outcomes (67, 70–72).

Clinically, the inflammatory markers observed in our cohort

provide further support for this mechanistic model. Leukocytosis,

neutrophilia, elevated neutrophil-to-lymphocyte ratio (NLR), and

increased D-dimer levels correlated with severity, aligning with

prior studies identifying these markers as prognostic indicators
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(21, 40, 73–75). The progression of cytokine elevation and

coagulopathy between days 7 and 10 of symptom onset—

previously associated with mortality—was consistent with the

systemic inflammatory signaling induced by heightened Ang II

activity (21, 23, 48, 49, 59, 76). Although lymphocyte count and

CRP showed inconsistent associations across studies, our findings

underscore the value of immunometabolic biomarkers,

particularly Ang II, NLR, and D-dimer, in risk stratification (32,

48, 77–79).

Finally, although Ang-(1–7) (80) and alamandine were not

measured, our preliminary data point to a trend of reduced

expression of MasR and MrgD receptors (50), which implies that

obesity and SARS-CoV-2 infection may contribute to decreased

protective RAAS signaling (4, 40, 81). Taken together, our findings

provide compelling evidence for a dual-hit model in which obesity

establishes a primed inflammatory and RAAS-altered baseline, and

SARS-CoV-2 amplifies these disruptions, culminating in severe

immunometabolic imbalance (5, 7, 43). This framework advances

current understanding of COVID-19 pathophysiology and

reinforces the need to consider adiposity-driven biological

mechanisms when evaluating risk and therapeutic strategies.
FIGURE 4

Tumor necrosis factor (TNF) concentration. (A) TNF stratified by BMI, between controls and mild cases with flu-like illness; (B) TNF stratified by
BMI, between controls and severe cases with severe acute respiratory syndrome; (C) TNF comparison between flu-like illness and severe acute
respiratory syndrome. Source: Author (2025). (A–C) were calculated using the Two-Way ANOVA test with Tukey’s post-hoc test. * Indicates
significant differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. #
Denotes significant intragroup difference (positives only) to assess the effect of BMI, LN+ with OB+ p < 0.05. LN-, negative lean (control); OB-,
negative obese (control). LN+, lean positive COVID-19; OB+, obese positive COVID-19. SG, Flu-Like Syndrome (mild/moderate manifestations);
SARS, Severe Acute Respiratory Syndrome (severe manifestations).
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The limitations of this study include the presence of

cardiometabolic comorbidities in all body composition groups, which

may have acted as confounding factors and reduced our ability to

isolate the specific contribution of obesity. Furthermore, the absence of

important metabolic markers—such as leptin, adiponectin, resistin,

and insulin—and the lack of direct measurements of Ang-(1-7),

aldosterone, and renin limited a more detailed assessment of the

immunometabolic pathways and the RAAS involved. Future

perspectives of the study will be to conduct cardiovascular and

metabolic biomarkers to further deepen the mechanistic

understanding of obesity-related vulnerability to SARS-CoV-2.
5 Conclusion

This study identified obesity as a key biological factor that

exacerbated COVID-19, demonstrating a direct association

between increased BMI, elevated Ang II, and heightened pro-

inflammatory cytokines, alongside reduced IL-10. By quantifying

Ang II across different BMI categories and clinical severity levels,

including mild and non-hospitalized cases, we provide
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mechanistic insights into the metabolic-immune interface of

obesity. Adiposity-related, inflammatory, and RAAS markers

emerge as promising targets for clinical assessment and

potential therapeutic interventions.
6 Novelty

This study reveals that obesity markedly worsens COVID-19

severity through dysregulation of the renin–angiotensin–

aldosterone system (RAAS) and a hyperinflammatory response.

We observed a strong positive correlation between body mass index

(BMI) and plasma Ang II levels, indicating that excess visceral

adiposity amplifies RAAS activation and disease progression. Obese

patients also showed elevated IL-1b, IL-6, TNF, reduced IL-10,

higher neutrophil-to-lymphocyte ratios (NLR), and an increased

need for ventilatory support, with adverse outcomes—including

mortality—occurring predominantly in this population. These

findings provide a mechanistic explanation, supporting a dual-hit

model in which obesity primes immunometabolic vulnerability that

is exacerbated by SARS-CoV-2 infection.
FIGURE 5

Interleukin - 10 concentration. (A) IL-10 stratified by BMI, between controls and mild cases with flu-like illness; (B) IL-10 stratified by BMI, between
controls and severe cases with severe acute respiratory syndrome; (C) IL-10 comparison between flu-like illness and severe acute respiratory
syndrome. Source: Author (2025). (A–C) were calculated using the Two-Way ANOVA test with Tukey’s post-hoc test. * Indicates significant
differences in intergroup comparisons (positives versus negatives) to assess the effect of viral infection. LN- with LN+, OB- with OB+. # Denotes
significant intragroup difference (positives only) to assess the effect of BMI, LN+ with OB+ p < 0.05. LN-, negative lean (control); OB-, negative
obese (control). LN+, lean positive COVID-19; OB+, obese positive COVID-19. SG, Flu-Like Syndrome (mild/moderate manifestations); SARS, Severe
Acute Respiratory Syndrome (severe manifestations).
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7 Significance

This study provides novel mechanistic evidence that obesity

exacerbates COVID-19 severity through RAAS dysregulation and

heightened inflammatory responses, with a direct correlation

between BMI and Ang II levels. Elevated plasma Ang II, IL-1b,
IL-6, and TNF, alongside reduced IL-10, identify potential

biomarkers for early risk stratification. Clinically, obese patients

exhibited higher NLR, greater ventilatory requirements, and

mortality restricted to this group, underscoring their vulnerability.

These findings advance the understanding of adiposity as an active

endocrine contributor to infectious disease outcomes and highlight

translational opportunities for risk assessment and therapeutic

strategies targeting RAAS and inflammation.
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